• Title/Summary/Keyword: Heavy-duty engine

Search Result 203, Processing Time 0.025 seconds

A Study for Fire Examples Involved in Engine Coolant leakage, Brake and Exhaust System Over-Heating of Heavy-Duty Truck Vehicle (대형 트럭 자동차의 엔진냉각수 누출, 제동 및 배기시스템 과열에 관련된 화재사례 고찰)

  • Lee, IL Kwon;Kook, Chang Ho;Ham, Sung Hoon;Lee, Young Suk;Hwang, Han Sub;You, Chang Bae;Moon, Hak Hoon;Jung, Dong Hwa;Ahn, Ho Cheol;Lee, Jeong Ho
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.4
    • /
    • pp.40-45
    • /
    • 2019
  • This paper is a purpose to study the failure example for heavy-duty vehicle fire. The first example, the researcher found the engine over-heating phenomenon causing a coolant leakage by the sealing poor of head-gasket because of D-ring part deformation contacting with cylinder liner top-part and cylinder head. He certified a fire breakout by short transferred to surrounding wiring of air-cleaner. The second example, a brake lining by return fault of break operating S cam causing with much wear of a rear 4 wheel brake lining repeatably was worn by friction. In the long run, it became the cause of fire. The third example, the researcher knew the fire cause was came about the short of wire by overload of tilting motor when the driver tilted up the cap to inspect a engine. Therefore, a heavy-duty fire must minimize the fire occurrence by thorough controlling.

Experimental studies on the diesel engine urea-SCR system using a double NOx sensor system

  • Tang, Wei;Cai, Yixi;Wang, Jun
    • Environmental Engineering Research
    • /
    • v.20 no.4
    • /
    • pp.397-402
    • /
    • 2015
  • SCR has been popularly approved as one of the most effective means for NOx emission control in heavy-duty and medium-duty vehicles currently. However, high urea dosing would lead to ammonia slip. And $NH_3$ sensor for vehicle emission applications has not been popularly used in real applications. This paper presents experimental studies on the diesel engine urea-SCR system by using a double NOx sensor system that is arranged in the downstream of the SCR catalyst based on ammonia cross-sensitivity. It was shown that the NOx conversion efficiency rised as $NH_3/NOx$ increases and the ammonia slip started from the $NH_3/NOx$ equal to 1.4. The increase of temperature caused high improvement of the SCR reaction rate while the space velocity had no obvious change. The ammonia slip was in advance as catalyst temperature or space velocity increase and the ammonia storage reduced as catalyst temperature or space velocity increase. The NOx real-time conversion efficiency rised as the ammonia accumulative storage increase and reached the maximum value gradually.

Submicrometer Particle Size Distribution of Emissions from Diesel Engines (디젤엔진에서 배출되는 미세 입자의 크기 분포)

  • 김민철;권순박;이규원;김종춘;류정훈;엄명도
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.5
    • /
    • pp.657-665
    • /
    • 1999
  • Particulate matter produced by diesel engines is of concern to cngine manufactures because of its environmental impact. The majority of diesel particles are in the range of smaller than 1 ${\mu}{\textrm}{m}$. Because of their tiny volume, ultrafine diesel particles contribute very little to the total mass concentration which is currently regulated for automobile emissions. Ultrafinc particles are known to have deleterious effects upon human health cspecially because they penetrate deeply human respiratory tract and have negative effects on the health. In this study, the engine exhaust gas was diluted in a dilution tunnel and the particle size distribution was measured using the scanning mobility particel sizer system. Measurements of the number and the mass concentrations of the diesel exhaust were made under different engine ooperating conditions. The dilution sampling system provided a common basis for collection of the exhaust by cooling and diluting the source emission prior to the measurement. The measurement results showed that the particle size distributions of the exhaust from the diesel vehicles equipment with either heavy-duty or lignt-duty diesel engines, were similar in the particle size range of 0.08~0.2${\mu}{\textrm}{m}$.

  • PDF

A study on expansion of lean burn limit with direct injection of the heavy-duty CNG engine (대형 CNG기관의 직접분사화에 의한 희박한계확장)

  • Park, Jung-Il;Chung, Chan-Moon;Noh, Ki-Chul;Lee, Jong-Tai
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3282-3287
    • /
    • 2007
  • Lean combustion is one of the most promising method for increasing engine efficiency and reducing the exhaust emission from SI gas engines. Due to the possibility of partial burn and misfire, however, under lean burn operation, stable flame kernel formation and fast burn rate are needed to guarantee a successful subsequent combustion. Experiment data were obtained on a single-cylinder CNG fueled SI engine to investigate the effect of direct injection, spark timing and variation of injection timing. Experimental results show that lean burn limit is ${\lambda}$=1.3 with port injection, and expansion of lean burn limit ${\lambda}$=1.4 with direct injection method, due to increase of turbulence intensity in cylinder and stratified charge. Combustion duration in lean region is improved by using the variation of injection timing.

  • PDF

An Exhaust Gas Study of HD Diesel Engine with the Electronic control EGR (전자제어 EGR을 사용한 대형디젤기관의 배출가스연구)

  • Park Kyi-yeol;Oh Yong-suk;Moon Byung-chul
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.1
    • /
    • pp.76-81
    • /
    • 2006
  • Modem after-treatment technology has been developed variously in order to decrease exhausted emission in diesel engine. However, it seems very difficult to comply with updated stringent emission standards. Specially, it has been many years that exhaust gas from gasoline automobile rather than from diesel is the major object concerned by Korea and other countries, and it is strongly required on the reduction techniques on harmful NOx and PM among those compositions. Thus, this research focused on the electronic control EGR and the target for this research is heavy-duty turbo-diesel engine with EGR technology(High pressure route and low pressure route system).

Study on Performance and An Exhaust Emission by Bio-Diesel Deterioration and Engine Load Rate at Heavy-Duty Diesel Engine (대형디젤기관에서 바이오디젤 열화와 엔진부하에 따른 배출가스특성 및 성능에 관한 연구)

  • Park, Man-Jae;Kim, Mi-Soo
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.3
    • /
    • pp.56-63
    • /
    • 2007
  • Modern diesel vehicle has to comply with the EURO IV, V regulation with low level of particulate matter and smoke emission Moreover, emission standards of each countries are becoming stringent in advanced countries such as USA and Europe. Because Bio-diesel is similar to diesel fuel, it is essential to judge the environmental and health effects deriving from the use of Bio-diesel in diesel engine. The deterioration characteristics of emission in accordance with aging vehicles must be regulated for Bio-diesel. Therefore, under 1200 driving hours, 220,000km driving distance condition and full load, the deterioration characteristics of emission were estimated. We could reduce sulfur contents of fuel, particulate matter and smoke emission by using Bio-diesel and conform the influence of engine performance, emission, and fuel consumption by Bio-diesel deterioration

MODELING OF DIRECT INJECTION DIESEL ENGINE EMISSIONS FOR A QUASI-DIMENSIONAL MULTI-ZONE SPRAY MODEL

  • Jung, D.;Assanis, D.N.
    • International Journal of Automotive Technology
    • /
    • v.5 no.3
    • /
    • pp.165-172
    • /
    • 2004
  • Phenomenological models for direct injection diesel engine emissions including NO, soot, and HC were implemented into a full engine cycle simulation and validated with experimental data obtained from representative heavy-duty DI diesel engines. The cycle simulation developed earlier by Jung and Assanis (2001) features a quasi-dimensional, multi-zone, spray combustion model to account for transient spray evolution, fuel-air mixing, ignition and combustion. In this study, additional models for HC emissions were newly implemented and the models for NO, soot, and HC emissions were validated against experimental data. It is shown that the models can predict the emissions with reasonable accuracy. However, additional effort may be required to enhance the fidelity of models across a wide range of operating conditions and engine types.

Emission Characteristics in The Application of ULSD, Biodiesel and DOC in Heavy Duty Diesel Engine (대형 디젤기관에서 초저유황경유, 바이오디젤 및 디젤산화촉매 적용시의 배기가스 특성)

  • Baik, Doo-Sung;Park, Man-Jae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.1
    • /
    • pp.52-58
    • /
    • 2004
  • To develop a low emission engine, it is necessary to obtain some better quality of automotive fuels. Sulfur in fuel is transformed to sulfate-laden PM as DOC is applied. Therefore, it necessary to provide low sulfur fuels before DOC is applied. According to the specification of test fuels, flash point, distillation 90%, cetane index are improved but viscosity is decreased in the process of desulfurization. Excessively reduced sulfur may cause to decrease lubricity of fuel and engine performance in fuel injection system. Therefore, this research was emphasized how the application of Bio-diesel affects on the emission characteristics and engine performance under the circumstance of ULSD and DOC.

A Study on Emission Reduction by Diesel Oxidation Catalyst in Diesel Engine (CI기관에서 디젤산화촉매장치에 의한 배출가스 저감에 관한 연구)

  • 김경배;한영출;강호인
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.4
    • /
    • pp.164-170
    • /
    • 1996
  • Among after treatment devices which reduce exhaust gas of diesel engine, diesel oxidation catalyst(DOC) with high reduction efficiency for gaseous matter and particulate matter is now being studied actively. In this study, an experiment was conducted to analyze the effects on factors of oxidaton characteristics and conversion efficiency of DOC. We tested to estimate change of engine performance whether a 11,000cc diesel engine equipps with DOC or not. We conducted test to estimate the reduction efficiency of exhaust gas in P-5 mode, in D-13 mode of heavy duty diesel regulation mode and in somoke opacity mode for two samples and also we conducted test to analyze the effects about both exhaust gas velocities 1,100rpm and 2,200rpm

  • PDF

A study on Emission Reduction by DOC on Heavy Duty Diesel Engine (대형디젤기관에서 DOC에 의한 배출가스 저감에 관한 연구)

  • 한영출;류정호;오용석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.5
    • /
    • pp.16-21
    • /
    • 1999
  • The diesel vehicle is relatively superior to gasoline vehicle on the fuel consumption, durability and combustion efficiency. However, exhaust emission from diesel vehicle are known to be harmful to human health and environment. The treatment technologies for the diesel exhaust gases are classified as replacement of fuel, quality control of diesel fuel, improvement of engine and aftertreatment system. The most effective for the treatment technology is known to be aftertreatment system, and this research is continuously conducted by many groups. The DOC system has many advantages of reducing particulates and harmful gaseous substances such as CO. HC. Moreover, it is simple in device structure, relatively low cost, and easy to install witout retrofitting the vehicle. In this study, experiment were conducted to analyze the effects on factors of oxidation characteristics and conversion efficiency of DOC. In experiment, test was conducted to estimate engine emission in 11,000cc diesel engine which was equipped with DOC.

  • PDF