• Title/Summary/Keyword: Heavy rain damage scale

Search Result 27, Processing Time 0.024 seconds

Development of 1ST-Model for 1 hour-heavy rain damage scale prediction based on AI models (1시간 호우피해 규모 예측을 위한 AI 기반의 1ST-모형 개발)

  • Lee, Joonhak;Lee, Haneul;Kang, Narae;Hwang, Seokhwan;Kim, Hung Soo;Kim, Soojun
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.5
    • /
    • pp.311-323
    • /
    • 2023
  • In order to reduce disaster damage by localized heavy rains, floods, and urban inundation, it is important to know in advance whether natural disasters occur. Currently, heavy rain watch and heavy rain warning by the criteria of the Korea Meteorological Administration are being issued in Korea. However, since this one criterion is applied to the whole country, we can not clearly recognize heavy rain damage for a specific region in advance. Therefore, in this paper, we tried to reset the current criteria for a special weather report which considers the regional characteristics and to predict the damage caused by rainfall after 1 hour. The study area was selected as Gyeonggi-province, where has more frequent heavy rain damage than other regions. Then, the rainfall inducing disaster or hazard-triggering rainfall was set by utilizing hourly rainfall and heavy rain damage data, considering the local characteristics. The heavy rain damage prediction model was developed by a decision tree model and a random forest model, which are machine learning technique and by rainfall inducing disaster and rainfall data. In addition, long short-term memory and deep neural network models were used for predicting rainfall after 1 hour. The predicted rainfall by a developed prediction model was applied to the trained classification model and we predicted whether the rain damage after 1 hour will be occurred or not and we called this as 1ST-Model. The 1ST-Model can be used for preventing and preparing heavy rain disaster and it is judged to be of great contribution in reducing damage caused by heavy rain.

Damage Types of Levee and its Maintenance and Repair (제방의 손상 유형 및 보수보강)

  • Moon, Dae-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.144-169
    • /
    • 2010
  • In 2002, property loss caused by failure or leakage of existing river levee structures was about 1.8 trillion in Korean Won, and furthermore in which damages of river structures are getting more severe due to characteristics of extremely extraordinary rain such as torrential rain in the locality or guerrilla heavy rain. In this regards, this paper collects and analyzes those damage records and costs for repair by statistic method, and moreover categorizes the causes of failure, erosion and overtopping of levee structures in large and small scale rivers threatened frequently by typhoon and heavy rainfall. It is believed that the results from the analyses can be used as a basic source in developing criteria of standards for design, construction, maintenance and inspection(or diagnosis) of hydraulic structures such as levee and drain conduit.

  • PDF

Development of the Wind Wave Damage Estimation Functions based on Annual Disaster Reports : Focused on the Western Coastal Zone (재해연보기반 풍랑피해예측함수 개발 : 서해연안지역)

  • Choo, Tai-Ho;Cho, Hyoun-Min;Shim, Sang-Bo;Park, Sang-Jin
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.1
    • /
    • pp.154-163
    • /
    • 2018
  • Not only South Korea but also Global world show that the frequency and damages of large-scale natural disaster due to the rise of heavy rain event and typhoon or hurricane intensity are increasing. Natural disasters such as typhoon, flood, heavy rain, strong wind, wind wave, tidal wave, tide, heavy snow, drought, earthquake, yellow dust and so on, are difficult to estimate the scale of damage and spot. Also, there are many difficulties to take action because natural disasters don't appear precursor phenomena However, if scale of damage can be estimated, damages would be mitigated through the initial damage action. In the present study, therefore, wind wave damage estimation functions for the western coastal zone are developed based on annual disaster reports which were published by the Ministry of Public Safety and Security. The wind wave damage estimation functions were distinguished by regional groups and facilities and NRMSE (Normalized Root Mean Square Error) was analyzed from 1.94% to 26.07%. The damage could be mitigated if scale of damage can be estimated through developed functions and the proper response is taken.

Changes in Localized Heavy Rain that Cause Disasters Due to Climate Crisis - Focusing on Gwangju (기후 위기로 인한 재난을 야기하는 집중호우 변화 - 광주광역시를 중심으로)

  • Kim, Youn-Su;Chang, In-Hong;Song, Kwang-Yoon
    • Journal of Integrative Natural Science
    • /
    • v.14 no.4
    • /
    • pp.162-175
    • /
    • 2021
  • Recently, due to global warming, the average temperature of the earth has risen, and the glaciers in the Antarctic and Arctic melt, leading to a rise in sea level, which is accompanied by powerful natural disasters such as strong typhoons and tsunamis around the world. Accordingly, a precipitation in summer in Korea also increased, and changes in the form of precipitation were showed with the increase. Compared to the past, the frequency of localized heavy rain is increasing, and the damage from flooding and flooding is increasing day by day. In this study, based on the precipitation data measured in hours from May to September from 2016 to 2021 according to the change in the precipitation form, according to the nature of the torrential rain investigated the change in the summer precipitation form. In addition, the trend of localized heavy rain from 2016 to 2021 was confirmed by classifying them into two types: localized heavy rains caused by cyclones and weather front, and by typhoons and large-scale cyclones. Through this, the change in precipitation due to the climate crisis should not be viewed as a single phenomenon, it should be reflected and discussed on our life focused on scientific and technological development, and it should be used as a stepping stone for realizing a humanistic.

The Prediction of Floodplain Using Web GIS (Web GIS를 이용한 침수범위 예측)

  • 강준묵;윤희천;이형석;강영미
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.19 no.4
    • /
    • pp.337-342
    • /
    • 2001
  • A natural disaster occupies a considerable part among various damages, and the damage of human lifes and property by heavy rain extends to hundreds, and billions in every you. In old times, flood was mainly occurred in big river or sudden slope, but these days, the damage of concentrated heavy rain is being extended to a city. Recently, very big floods occurred continuously, so real time submersion expectation system which can expect the inundation boundary according to the scale is needed so as to protect lifes and property. In this study, in and around Jungrang river, where the damage of flood is big, is chosen as a sample, and the submersion of that area is expected by analyzing the flux and overflowing using DEM, and connecting with Web GIS in real time.

  • PDF

A Study on Rain Gutters with Coanda Effect (코안다효과가 적용된 빗물받이에 관한 연구)

  • Jung, Yong Sin;Kim, Yong Sun;Shin, Hee Jae;Ko, Sang Cheol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.4
    • /
    • pp.58-64
    • /
    • 2020
  • Large-scale flooding due to extreme weather and typhoons causes heavy damage. This is especially true in urban areas where accumulated debris prevents the smooth drainage of rainwater in sewage facilities such as rain gutters installed near roads. In this study, to improve the drainage performance and effectively remove foreign substances by applying the dust screen used in rivers, the rain gutter with Coanda effect was simulated and compared with the experiment. The simulation was performed by setting the parameters to the fillet radius R1 and R2 at the top of the screen filter, the fillet radius R3 at the bottom of the screen filter, and the height H of the gap W from the bottom. W is the gap at the backside of screen filter which is applied to stimulate the Coanda effect. According to the simulation results, the highest drain performance was 87.99% derived from R1= 30mm, R2= 5mm, R3= 85mm, H= 75mm, and W= 2mm. The error rate of simulation results refer to the 4.89%~7.36% compared to the experimental results. In the future, by considering the slope according to the installation environment, the simulation results can be applied to the actual roadside to help prevent flood damage.

Development of Estimation Functions for Strong Winds Damage Based on Regional Characteristics : Focused on Jeolla area (지역특성 기반의 강풍피해 예측함수 개발 : 전라지역을 중심으로)

  • Song, Chang Young;Yang, Byong Soo
    • Journal of Korean Society of Disaster and Security
    • /
    • v.13 no.4
    • /
    • pp.13-24
    • /
    • 2020
  • Abnormal weather conditions have lately been occurring frequently due to the rapid economic development and global warming. Natural disasters classified as storm and flood damages such as heavy rain, typhoon, strong wind, high seas and heavy snow arouse large-scale human and material damages. To minimize damages, it is important to estimate the scale of damage before disasters occur. This study is intended to develop a strong wind damage estimation function to prepare for strong wind damage among various storm and flood disasters. The developed function reflects weather factors and regional characteristics based on the strong wind damage history found in the Natural Disaster Yearbook. When the function is applied to a system that collects real-time weather information, it can estimate the scale of damage in a short time. In addition, this function can be used as the grounds for disaster control policies of the national and local governments to minimize damages from strong wind.

Development of a method to create a matrix of heavy rain damage rating standards using rainfall and heavy rain damage data (강우량 및 호우피해 자료를 이용한 호우피해 등급기준 Matrix작성 기법 개발)

  • Jeung, Se Jin;Yoo, Jae Eun;Hur, Dasom;Jung, Seung Kwon
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.2
    • /
    • pp.115-124
    • /
    • 2023
  • Currently, as the frequency of extreme weather events increases, the scale of damage increases when extreme weather events occur. This has been providing forecast information by investing a lot of time and resources to predict rainfall from the past. However, this information is difficult for non-experts to understand, and it does not include information on how much damage occurs when extreme weather events occur. Therefore, in this study, a risk matrix based on heavy rain damage rating was presented by using the impact forecasting standard through the creation of a risk matrix presented for the first time in the UK. First, through correlation analysis between rainfall data and damage data, variables necessary for risk matrix creation are selected, and PERCENTILE (25%, 75%, 90%, 95%) and JNBC (Jenks Natural Breaks Classification) techniques suggested in previous studies are used. Therefore, a rating standard according to rainfall and damage was calculated, and two rating standards were synthesized to present one standard. As a result of the analysis, in the case of the number of households affected by the disaster, PERCENTILE showed the highest distribution than JNBC in the Yeongsan River and Seomjin River basins where the most damage occurred, and similar results were shown in the Chungcheong-do area. Looking at the results of rainfall grading, JNBC's grade was higher than PERCENTILE's, and the highest grade was shown especially in Jeolla-do and Chungcheong-do. In addition, when comparing with the current status of heavy rain warnings in the affected area, it can be confirmed that JNBC is similar. In the risk matrix results, it was confirmed that JNBC replicated better than PERCENTILE in Sejong, Daejeon, Chungnam, Chungbuk, Gwangju, Jeonnam, and Jeonbuk regions, which suffered the most damage.

Development for rainfall classification based on local flood vulnerability using entropy weight in Seoul metropolitan area (엔트로피 가중치를 활용한 지역별 홍수취약도 기반의 서울지역 강우기준 산정기법)

  • Lee, Seonmi;Choi, Youngje;Lee, Eunkyung;Ji, Jungwon;Yi, Jaeeung
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.4
    • /
    • pp.267-278
    • /
    • 2022
  • Recently Flood damage volume has increased as heavy rain has frequently occurred. Especially urban areas are a vulnerability to flooding damage because of densely concentrated population and property. A local government is preparing to mitigate flood damage through the heavy rain warning issued by Korea Meteorological Administration. This warning classification is identical for a national scale. However, Seoul has 25 administrative districts with different regional characteristics such as climate, topography, disaster prevention state, and flood damage severity. This study considered the regional characteristics of 25 administrative districts to analyze the flood vulnerability using entropy weight and Euclidean distance. The rainfall classification was derived based on probability rainfall and flood damage rainfall that occurred in the past. The result shows the step 2 and step 4 of rainfall classification was not significantly different from the heavy rain classification of the Korea Meteorological Administration. The flood vulnerability is high with high climate exposure and low adaptability to climate change, and the rainfall classification is low in the northern region of Seoul. It is possible to preemptively respond to floods in the northern region of Seoul based on relatively low rainfall classification. In the future, we plan to review the applicability of rainfall forecast data using the rainfall classification of results from this study. These results will contribute to research for preemptive flood response measures.

A Study on the Estimation of the Design Flood for Small Catchment in Jirisan (지리산 소하천유역의 홍수량 산정에 대한 고찰)

  • Chang, Hyung Joon;Kim, Seong Goo;Yoon, Young Ho;Kim, Min Ho
    • Journal of Korean Society of Disaster and Security
    • /
    • v.15 no.3
    • /
    • pp.23-29
    • /
    • 2022
  • The frequency of localized heavy rain is increasing due to the influence of abnormal climate that is rapidly increasing in recent years. As a result, the difficulty of safe water resource management is increasing and human and material damage is increasing. Various countermeasures are being established to reduce the damage caused by localized heavy rain, but small-scale mountain catchments are experiencing many difficulties due to the lack of a basic plan. Therefore in this study the risk of flooding was evaluated using the rainfall-runoff model in the Yu-pyeong catchment national park among national parks in Korea. As a result of the analysis, it was simulated that flooding occurred in the Yu-pyeong catchment of Mt. Jirisan when rainfall with a recurrence frequency of 50 years or more occurred, and it was confirmed that there was a high risk of structures, safety facilities and trails.