• 제목/요약/키워드: Heavy press

검색결과 224건 처리시간 0.023초

Fundamental aspects on the seismic vulnerability of ancient masonry towers and retrofitting techniques

  • Preciado, Adolfo;Bartoli, Gianni;Budelmann, Harald
    • Earthquakes and Structures
    • /
    • 제9권2호
    • /
    • pp.339-352
    • /
    • 2015
  • Ancient masonry towers constitute a relevant part of the cultural heritage of humanity. Their earthquake protection is a topic of great concern among researchers due to the strong damage suffered by these brittle and massive structures through the history. The identification of the seismic behavior and failure of towers under seismic loading is complex. This strongly depends on many factors such as soil characteristics, geometry, mechanical properties of masonry and heavy mass, as well as the earthquake frequency content. A deep understanding of these aspects is the key for the correct seismic vulnerability evaluation of towers and to design the most suitable retrofitting measure. Recent tendencies on the seismic retrofitting of historical structures by means of prestressing are related to the use of smart materials. The most famous cases of application of prestressing in towers were discussed. Compared to horizontal prestressing, vertical post-tensioning is aimed at improving the seismic behavior of towers by reducing damage with the application of an overall distribution of compressive stresses at key locations.

Modelling of strains in reinforced concrete flexural members using alpha-stable distribution

  • Rao, K. Balaji;Anoop, M.B.;Kesavan, K.;Balasubramanian, S.R.;Ravisankar, K.;Iyer, Nagesh R.
    • Computers and Concrete
    • /
    • 제11권5호
    • /
    • pp.411-440
    • /
    • 2013
  • Large fluctuations in surface strain at the level of steel are expected in reinforced concrete flexural members at a given stage of loading due to the emergent structure (emergence of new crack patterns). This has been identified in developing deterministic constitutive models for finite element applications in Ibrahimbegovic et al. (2010). The aim of this paper is to identify a suitable probability distribution for describing the large deviations at far from equilibrium points due to emergent structures, based on phenomenological, thermodynamic and statistical considerations. Motivated by the investigations reported by Prigogine (1978) and Rubi (2008), distributions with heavy tails (namely, alpha-stable distributions) are proposed for modeling the variations in strain in reinforced concrete flexural members to account for the large fluctuations. The applicability of alpha-stable distributions at or in the neighborhood of far from equilibrium points is examined based on the results obtained from carefully planned experimental investigations, on seven reinforced concrete flexural members. It is found that alpha-stable distribution performs better than normal distribution for modeling the observed surface strains in reinforced concrete flexural members at these points.

크레인 안전인증기준에 대한 인간공학적 분석 및 개선 (Ergonomic Analysis and Improvement of Crane Safety Certification Standards)

  • 이용석;정기효
    • 대한안전경영과학회지
    • /
    • 제23권3호
    • /
    • pp.1-9
    • /
    • 2021
  • Crane is an important equipment for the transport of heavy goods in industrial sites, but it is also known as one of the most fatal machines. In order to reduce crane accidents, it is necessary to minimize human errors during crane operations. To achieve this, ergonomic design principles are recommended to be reflected from the crane design stage. The study analyzed the safety certification standards for crane that should be fulfilled at the crane design and manufacturing stage. This study selected five representative ergonomic design principles (feedback, compatibility, consistency, full-proof, and fail-safe) by surveying heuristic evaluation principles that are widely used for usability evaluation in early design stage. Next, the principles were applied to the safety certification standards to identify insufficient clauses. This study identified 12 insufficient clauses out of 119 in the current safety certification standards for crane and discussed their improvement directions to comply the ergonomic principles. The analysis results of this study can help of improving the safety certification standards and the method used in this study can also be applied to identify insufficient clauses in the safety certification standards for other industrial machines such as press machine and lift.

Ground improvement using geocells to enhance trafficability in desert soils

  • Kumar, Anand;Singh, Akshay P.;Chatterjee, Kaustav
    • Geomechanics and Engineering
    • /
    • 제19권1호
    • /
    • pp.71-78
    • /
    • 2019
  • Massive investments are going on to promote and build transportation infrastructure all across the globe with the challenges being more than budgetary. Sandy soils which are predominant in coastal and border areas in India have typical characteristics. The shear strength of such soil is very low which makes it difficult for any kind of geotechnical construction and hence soil stabilization needs to be carried out for such soil conditions. The use of geocells is one of the most economical methods of soil improvement which is used to increase strength and stiffness and reduce the liquefaction potential of the soil. The use of geocells in stabilizing desert sand and results from a series of plate load test on unreinforced soil and geocell reinforced homogenous sand beds are presented in the present study. It also compares the field results using various load class vehicles like heavy load military vehicles on geocell reinforced soils with the experimental results and comes out with the fact that the proposed technique increases the strength and stiffness of sandy soil considerably and provides a solution for preventing settlement and subsidence.

Potential soil loss evaluation using the RUSLE/RUSLE-runoff models in Wadi Saida watershed (N-W Algeria)

  • Cherif, Kessar;Yahia, Nasrallah;Bilal, Bilssag
    • Advances in environmental research
    • /
    • 제9권4호
    • /
    • pp.251-273
    • /
    • 2020
  • Soil degradation has become a major worldwide environmental problem, particularly in arid and semi-arid climate zones due to irregular rainfall and the intensity of storms that frequently generate heavy flooding. The main objective of this study is the use of geographic information system and remote sensing techniques to quantify and to map the soil losses in the Wadi Saida watershed (624 ㎢) through the revised universal soil loss equation model and a proposed model based on the surface erosive runoff. The results Analysis revealed that the Wadi Saida watershed showed moderate to moderately high soil loss, between 0 and 1000 t/㎢/year. In the northern part of the basin in the region of Sidi Boubkeur and the mountains of Daia; which are characterized by steep slopes, values can reach up to 3000 t/㎢/year. The two models in comparison showed a good correlation with R = 0.95 and RMSE = 0.43; the use of the erosive surface runoff parameter is effective to estimate the rate of soil loss in the watersheds. The problem of soil erosion requires serious interventions, particularly in basins with disturbances and aggressive climatic parameters. Good agricultural practices and forest preservation areas play an important role in soil conservation.

Biosorption of Cr (VI) ions by Ficus religiosa barks: Batch and continuous study

  • Karthick, S;Palani, R;Sivakumar, D;Meyyappan, N
    • Membrane and Water Treatment
    • /
    • 제13권5호
    • /
    • pp.209-217
    • /
    • 2022
  • In the present research, Ficus religiosa Bark (FRB) is used as an adsorbent for the removal of heavy metal Cr (VI) ions. This Ficus religiosa Bark was characterized by Scanning Electron Microscope, Fourier transform infrared Spectroscopy, Thermo Gravimetric Analyzer and the results showed that activated adsorbent have high adsorption capacity and withstand even in high temperature. Batch and Continuous experiments were conducted to determine the effect of various parameters such as pH, contact time, adsorbent dose and initial metal concentration. The biosorption followed pseudo first order kinetic model. The adsorption isotherms of Cr (VI) on Ficus religiosa fitted well with the Temkin model. In Batch study, maximum biosorption capacity of Cr (VI) was found to be 37.97 mg g-1 (at optimal pH of 2, adsorbent dosage of 0.3 grams and concentration of Cr (VI) is100 mg L-1). The Continuous mode of study shows that 97% of Cr (VI) ion removal at a flow rate of 15 ml min-1. From the results, selected Ficus religiosa Bark has the higher adsorption capacity for the removal of Cr (VI) ions from wastewater.

The characteristics of subgrade mud pumping under various water level conditions

  • Ding, Yu;Jia, Yu;Wang, Xuan;Zhang, Jiasheng;Luo, Hao;Zhang, Yu;Chen, Xiaobin
    • Geomechanics and Engineering
    • /
    • 제30권2호
    • /
    • pp.201-210
    • /
    • 2022
  • This paper presents a study regarding the influence of various water levels on the characteristics of subgrade mud pumping through a self-developed test instrument. The characteristics of mud pumping are primarily reflected by axial strain, excess pore water pressure, and fine particle migration. The results show that the axial strain increases nonlinearly with an increase in cycles number; however, the increasing rate gradually decreases, thus, an empirical model for calculating the axial strain of the samples is presented. The excess pore water pressure increases rapidly first and then decreases slowly with an increase in cycles number. Furthermore, the dynamic stress within the soil first rapidly decreases and then eventually slows. The results indicate that the axial strain, excess pore water pressure, and the height and weight of the migrated fine particles decrease significantly with a low water level. In this study, when the water level is 50 mm lower than the subgrade soil surface, the issue of subgrade mud pumping no longer exist.

Transverse buckling analysis of spatial diamond-shaped pylon cable-stayed bridge based on energy approach

  • Zheng, Xing;Huang, Qiao;Zheng, Qing-gang;Li, Zhen
    • Structural Engineering and Mechanics
    • /
    • 제83권1호
    • /
    • pp.123-134
    • /
    • 2022
  • The stability of cable-stayed bridges is an important factor considered during design. In recent years, the novel spatial diamond-shaped bridge pylon has shown its advantages in various aspects, including the static response and the stability performance with the development of cable-stayed bridge towards long-span and heavy-load. Based on the energy approach, this paper presents a practical calculation method of the completed state stability of a cable-stayed bridge with two spatial diamond-shaped pylons. In the analysis, the possible transverse buckling of the girder, the top pylon column, and the mid pylon columns are considered simultaneously. The total potential energy of the spatial diamond-shaped pylon cable-stayed bridge is calculated. And based on the principle of stationary potential energy, the transverse buckling coefficients and corresponding buckling modes are obtained. Furthermore, an example is calculated using the design parameters of the Changtai Yangtze River Bridge, a 1176 m cable-stayed bridge under construction in China, to verify the effectiveness and accuracy of the proposed method in practical engineering. The critical loads and the buckling modes derived by the proposed method are in good agreement with the results of the finite element method. Finally, cable-stayed bridges varying pylon and girder stiffness ratios and pylon geometric dimensions are calculated to discuss the applicability and advantages of the proposed method. And a further discussion on the degrees of the polynomial functions when assuming buckling modes are presented.

A new type notched slab approach for timber-concrete composite construction: Experimental and numerical investigation

  • Yilmaz, Semih;Karahasan, Olguhan Sevket;Altunisik, Ahmet Can;Vural, Nilhan;Demir, Serhat
    • Structural Engineering and Mechanics
    • /
    • 제81권6호
    • /
    • pp.737-750
    • /
    • 2022
  • Timber-Concrete Composite construction system consists of combining timber beam or deck and concrete with different connectors. Different fastener types are used in Timber-Concrete Composite systems. In this paper, the effects of two types of fasteners on structural behavior are compared. First, the notches were opened on timber beam, and combined with reinforced concrete slab by fasteners. This system is called as Notched Connection System. Then, timber beam and reinforced concrete slab were combined by new type designed fasteners in another model. This system is called as Notched-Slab Approach. Two laboratory models were constructed and bending tests were performed to examine the fasteners' effectiveness. Bending test results have shown that heavy damage to concrete slab occurs in Notched Connection System applications and the system becomes unusable. However, in Notched-Slab Approach applications, the damage concentrated on the fastener in the metal notch created in the slab, and no damage occurred in the concrete slab. In addition, non-destructive experimental measurements were conducted to determine the dynamic characteristics. To validate the experimental results, initial finite element models of both systems were constituted in ANSYS software using orthotropic material properties, and numerical dynamic characteristics were calculated. Finite element models of Timber-Concrete Composite systems are updated to minimize the differences by manual model updating procedure using some uncertain parameters such as material properties and boundary conditions.

Modal analysis and multi-objective optimization of lightweight analysis of the main beam of the concrete spreader

  • Zhang, Shiying;Song, Bo;Zhang, Ke;Chen, Hongliang;Zou, Defang;Liu, Chang;Zhu, Chunxia;Li, Dong;Yu, Wenda
    • Computers and Concrete
    • /
    • 제28권5호
    • /
    • pp.465-478
    • /
    • 2021
  • On the premise of ensuring that the static performance of the concrete spreader is met, the first-order natural frequency of the concrete spreader is increased, and the weight of the main beam is reduced. ANSYS is used as an analysis tool to perform modal analysis on the concrete spreader. The natural frequency, mode shape and modal test verification will be obtained to ensure the accuracy of finite element model analysis. Using the ANSYS designxplorer module, the size of the main beam is set, and the response surface model between the parameter variables and the optimization objective is established according to the experimental design points. Screening algorithm and MOGA algorithm are used to multi-optimize the stress, first-order natural frequency and girder weight, and the optimal solution is obtained by comparison. The results of modal analysis are consistent with those of the experiment, and a set of optimal solutions is obtained through the optimization algorithm. The optimal solution obtained can meet the purpose of increasing the first-order natural frequency of the concrete spreader and reducing the weight of the main beam under the premise of ensuring the overall dynamic and static performance of the concrete spreader.