• Title/Summary/Keyword: Heavy metals fraction

Search Result 156, Processing Time 0.025 seconds

Heavy metals and VOCs contamination of urban Broundwaters in Seoul, Korea

  • Park, Seong-Sook;Yun, Seong-Taek;Park, Byoung-Young;Yu, Soon-Young
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.291-295
    • /
    • 2002
  • We measured the concentrations of heavy metals and VOCs in groundwaters (N=38) in Seoul. The comparison of our data with U.S. Environmental Protection Agency's Maximum Contaminant Levels for Drinking Water and with the Korean Drinking Water Standards shows that most of the metals except for Fe and Mn do not exceed the levels. However, the concentrations of most heavy metals (esp., Zn, Cu, Cr, Ni) tend to increase in residential and industrialized areas. The examination of the metal speciation using Anodic Stripping Voltammetry (ASV) and TOC analyzer Indicates that large amounts of Zn occur as labile metal fraction, whereas Cu occurs as non- labile forms at many sites, possibly due to its tendency to be adsorbed onto inorganic colloidal particles to form electroinactive species in groundwater. The most frequently existed VOCs in Seoul groundwaters are trichloroethylene and tetrachloroethylene, especially in agricultural, industrial, and high traffic areas.

  • PDF

Contamination of Heavy Metals from Dongmyeong Au-Ag Mine Area (동명 금-은 광산 주변의 중금속 오염)

  • 이광춘;김세현;이승호;서용찬
    • Economic and Environmental Geology
    • /
    • v.36 no.1
    • /
    • pp.17-25
    • /
    • 2003
  • Researches were carried out to investigate the characteristics and concentration of heavy metal elements of stream water through Dongmyoung abandoned metal mine and soil adjacent to the mine. The pH range of water was 5.9∼7.1 that implies the water environment was acidic to neutral. The contents and distribution aspects of heavy metals in water samples varied with geochemical characteristics of element, but the concentration of heavy metals has the tendency of increase closer to the mine in general. The results of soil analysis show that total heavy metal concentration of agricultural soil near mine was far lower than those of ore tailing and dumping site. Therefore, the effects of the abandoned mine on stream water and agricultural products were supposed to be insignificant, particularly because the portion of absorbed carbonates and reducible fractions among total heavy metal concentration was relatively lower than the other. Since, however total heavy metal concentrations of mining site were relatively higher than those of adjacent region, there is a possibility of heavy metal difussion when the chemical environment of the site changes due to migration of surface and underground water. It is suggested that the preventive measures for water and soil pollution by the heavy metals would be considered around the region.

Environmental contamination and geochemical behaviour of heavy metals around the abandoned Songcheon Au-Ag mine, Korea

  • Lim Hye-sook;Lee Jin-Soo;Chon Hyo-Teak;Sager Manfred
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.544-547
    • /
    • 2003
  • The objective of this study is to investigate the contamination levels and dispersion patterns of arsenic and heavy metals and to estimate the bioaccessible fraction of the metals in soil and plant samples in the vicinity of the abandoned Songcheon Au-Ag mine. Tailings, soils, plants (Chinese cabbage, red pepper, soybean, radish, sesame leaves, green onion, lettuce, potato leaves, angelica and groundsel) and waters were collected around the mine site. After appropriate preparation, all samples were analyzed for As, Cd, Cu, Pb and Zn by ICP-AES and ICP-MS. Elevated levels of As and heavy metals were found in tailings. Mean concentrations of As in agricultural soils were higher than the permissible level. Especially, maximum level of As in farmland soil was 513 mg/kg. The highest concentrations of As and Zn were found in Chinese cabbage (6.7 mg/kg and 359 mg/kg, respectively). Concentrations of As, Cd, and Zn in most stream waters which are used for drinking water around this mine area were higher than the permissible levels regulated in Korea. Maximum levels of As, Cd and Zn in stream waters were 0.78 mg/L, 0.19 mg/L and 5.4 mg/L, respectively. These results indicate that mine tailings can be the main contamination sources of As and heavy metals in the soil-water system in the mine area. The average of estimated bioaccessible fraction of As in farmland soils were $3.7\%$ (in simulated stomach) and $10.8\%$ (in simulated small intestine). The highest value of bioaccessible fraction of metal in farmland soils was $46.5\%$ for Cd.

  • PDF

Electrokinetic Removal and Removal Characteristics of Heavy Metals from Metal-Mining Deposit (동전기법에 의한 광산퇴적토의 중금속 제거 특성)

  • Lee, Chang-Eun;Shin, Hyun-Moo
    • Journal of Environmental Science International
    • /
    • v.12 no.2
    • /
    • pp.227-236
    • /
    • 2003
  • Electrokinetic remediation technique offers the opportunity to extract heavy metals from soils with high plasticity. The experiment demonstrated the applicability of electrokinetic remediation on metal-mining deposit and the decision of the enhancement method for four kinds of bench-scale studies. According to the sequential extraction of heavy metals in the "I" mining deposit, Pb and Cu were mostly associated with residual fraction and Zn and Cd were associated with water soluble and residual fraction. Therefore, removable fractions by electrokinetic technology was determined by the sum of the fraction of water soluble and exchangeable, which is Cu : 19.53%, Pb : 1.42%, Cd : 52.82%, Zn : 57.28%, respectively. When considering electrical potential, volume of effluent, soil pH, and eliminated rate of contaminant, results determined by sum of each weight were Citric aic+SDS (13) > 0.1N $HNO_3$ (10) > HAc (8) > DDW (4). Therefore, citric acid and SDS mixed solution was determined the best enhancing agent for the remediation of metal mining deposit.g deposit.

Analysis the depth effect of organic pollutants and heavy metals using biostimulant ball in contaminated coastal sediments (해양오염저질의 오염물질 정화를 위한 생물활성촉진제 투여 깊이 연구)

  • Song, Young-chae;Woo, Jung-Hui;Subha, Bakthavachallam
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2015.07a
    • /
    • pp.177-178
    • /
    • 2015
  • Sediments play a major role in determining pollution pattern in aquatic systems and reflecting the pollutant deposition. In the present study analysis the depth effect of organic pollutants and heavy metals using slow release biostimulant ball (BSB) in coastal sediment. BSB size fixed at 3cm, depth varied from 0cm to 10cm depth and 1 and 3 month interval period was carried out for the study. The organic pollutants of chemical oxygen demand, total solids and volatile solids were significantly changed at the surface sediment (0cm)in 1 month and 3 month interval time using BSB. In contrast, sediment depth increase upto 10cm the reduction percentage decrease like to control. Vertical distribution of heavy metals are not consistent from the surface layer toward the bottom layers. Heavy metals fractions were significantly changes, the exchangeable fraction was reduced and other organic and residual fractions were stabilized percentage are increased. This finding concluded BSB is effective for reduce organic pollutants, heavy metals stabilization from the contaminated sediment.

  • PDF

Health Risk Assessment of Heavy Metals in Fine Particles Collected in Seoul Metropolitan Area (서울북부 지역 미세먼지에 함유된 유해 중금속의 분석 및 건강위해성평가)

  • Park Eun-Jung;Kang Misun;You Dae-Eun;Kim Dae-Seon;Yu Seung-Do;Chung Kyu-Hyuck;Park Kwangsik
    • Environmental Analysis Health and Toxicology
    • /
    • v.20 no.2 s.49
    • /
    • pp.179-186
    • /
    • 2005
  • Particulate materials (PM) less than 10 ${\mu}m$ in diameter are of special interest in air pollution because they are respirable and responsible for the increasing mortality rate of lung cancer and cardiovascular diseases. These particles are often referred to as $PM_{10}$ and they are divided into a coarse fraction and a fine fraction which is also often referred to as $PM_{25}$. In this study, we monitored the TSP, $PM_{10},\;PM_{2.5}$ concentration of ambient air collected in northern part of Seoul in early spring and measured the concentration of heavy metals; Cr, Mn, Zn, As, Cd, and Pb. All the heavy metals were found in the collected particles and the concentrations were variable in the $PM_{10},\;and\;PM_{2.5}$ respectively. The detected concentration ranges were Cr: $ND\~2,889ng/m^3,\;Mn:2.4\~257.9ng/m^3,\;Zn:ND\~353.7ng/m^3,\; As:ND\~22.3ng/m^3,\;Cd:0.1\~2.9ng/m^3,\;and\;Pb:ND\~392.2ng/m^3$ in fine particles. Heavy metal toxicity of the particles were also tested in $H_9C_2$ cell line derived from rat cardiomyocytes. As for the results of health risk assessment calculated by unit risk of IRIS, heavy metals in ambient air of Seoul metropolitan area were found to be responsible for the increase of total excess cancer risk. Among them, chromium (hexavalent) was found to be the most risky in fine particles of ambient air collected in the northern part of Seoul in early spring.

Distribution of Heavy Metals in Sediment Cores Collected from the Nakdong River, South Korea

  • Magalie, Ntahokaja;Lee, Jiyeong;Kang, Jihye;Kim, Jeonghoon;Park, Ho-Jin;Bae, Sang Yeol;Jeong, Seok;Kim, Young-Seog;Ryu, Jong-Sik
    • Journal of the Korean earth science society
    • /
    • v.42 no.4
    • /
    • pp.412-424
    • /
    • 2021
  • Understanding the distribution of heavy metals in sediment is necessary because labile heavy metals can partition into the water column and bioaccumulate in aquatic organisms. Here we investigated six heavy metals (Co, Cu, Mn, Ni, Pb, and Zn) in sediment cores using a five-step sequential leaching method to examine the occurrence of heavy metals in the sediment. The results showed that all elements, except Mn, are depleted in the exchangeable and carbonate fractions. However, heavy metal concentrations are much higher in the Fe-Mn oxide and organic matter fractions, especially for Cu, indicating enrichment in the organic matter fraction. Furthermore, contamination parameters (contamination factor and geoaccumulation index) indicate that Mn contamination is high, primarily derived from anthropogenic sources, presenting a potential risk to ecosystems in the Nakdong River.

Solidification/Stabilization of Heavy Metals in Sewage Sludge Prior to Use as a Landfill Cover Material (매립지 복토재로의 활용을 위한 하수슬러지 내 중금속의 고형화/안정화)

  • Park, Youn-Jin;Shin, Won-Sik;Choi, Sang-June;Lee, Hoon-Ha
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.7
    • /
    • pp.665-675
    • /
    • 2010
  • The effects of chemical binders (ladle slag, ordinary portland cement (OPC), hydroxyapatite and calcium hydroxide) on the solidification/stabilization of heavy metals (Cd, Cu, Ni, Pb, Zn) in sewage sludge were evaluated by chemical leaching tests such as EDTA extraction, TCLP and sequential extraction. The results of EDTA extraction showed that heavy metal concentrations in sewage sludge were highly reduced after solidification/stabilization with slag, cement or calcium hydroxide. However, EDTA interrupted solidification/stabilization of heavy metals by hydroxyapatite. The TCLP-extracted heavy metal concentrations in sewage sludge after solidification/stabilization with chemical amendments were highly reduced. However, Cu concentration in the sewage sludge solidified/stabilized with slag, cement or calcium hydroxide increased because the pH of TCLP solution was higher than 7. Mixtures of sludge 1 : slag 0.2 : calcium hydroxide 0.1 (wt ratio) showed the least leachability in batch TCLP and EDTA extraction. The results of sequential extraction (SM&T, formaly BCR) indicated that the distribution of heavy metals changed from exchangable and carbonate fractions to strongly bound organic fraction. It was found that maximum leachate concentrations of Ba, Cd, Cr and Pb from sewage sludge amended with slag and calcium hydroxide were far below US EPA TCLP regulations.

Release of Heavy Metals into Water from the Resuspension of Coastal Sediment (연안 오염퇴적물의 재부상에 의한 중금속의 수계용출특성)

  • Song, Young-Chae;Subha, Bakthavachallam;Woo, Jung-Hui
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.7
    • /
    • pp.469-475
    • /
    • 2014
  • The study investigated the physicochemical characteristics and the ecological risk of the Northport sediment in B city and the releasing properties of heavy metals into seawater during the resuspension also studied. The major components of the sediment are fine silt and clay which contains high organic matter and AVS (Acid volatile sulfide) and the ecological risk of the heavy metals in sediment also very high. The release rate of heavy metals into seawater was in order of Pb>>Cu>Cr>>Zn>Cd during the resuspension in a batch experiment, and the heavy metal release mainly attributed to the oxidation of metal sulfides. Heavy metals which came from easily oxidisable metal sulfides rapidly contaminated seawater within about 1.0 h of the sediment resuspension. The sulfide oxidation during the resuspension increased the residual fraction of heavy metals in the sediment, decreased the organic bound fraction, and changed the other fractions of heavy metals in the sediment. The release of heavy metals from the sediment during resuspension was affected by the resuspension time, the oxidation rate of metal sulfides and resuspended concentration of the sediment particle.

Concentration and Geochemical Phases of Heavy Metals in Marine Sediments in the Vicinity of the Coal-fired Power Plant of Korea (석탄화력발전소 주변해역 퇴적물 내의 중금속원소의 함량과 지화학적 존재형태)

  • Lee, Doo-Ho;Jeong, Yeon-Tae
    • Journal of Environmental Impact Assessment
    • /
    • v.9 no.4
    • /
    • pp.301-314
    • /
    • 2000
  • Marine surface sediments in the vicinity of Samcheonpo coal-fired power plant were analyzed by a total analysis($HF+HNO_3+HClO_4$) and sequential extraction procedure for heavy metals in order to investigate the total concentrations and geochemical phases of heavy metals. The result showed that the concentrations of Cr, Cu, Fe and Zn were within ranges typical for coastal areas, which reflected the mineralogical composition of the sediments in the studied area. However, the distributions of Cd, Co, Mn, Ni and Pb were rather different from the former, indicating that these heavy metals had a different origin, or that they were affected by a different geochemical mechanism. Chemical partitioning of heavy metals using sequential extraction procedure revealed that Cu, Fe, Pb, Zn were significantly bound to the residual phases of the sediments, whereas carbonate phases contained considerable amounts of Mn. The significant association of Pb with the exchangeable fraction also indicated that Pb was more mobile and bioavailable than Cu, Fe, Mn, Zn.

  • PDF