• 제목/요약/키워드: Heavy metal effects

검색결과 477건 처리시간 0.032초

A Study on the Concentration of Nanoparticles and Heavy Metals in Indoor/Outdoor Air in a University Administrative Public Office (대학교 행정실 실내 외 공기 중 나노입자와 중금속 농도에 관한 연구)

  • Choi, Su-Hyeon;Im, Ji-Young;Park, Hee-Jin;Chung, Eun-Kyung;Kim, Jong-Oh;Son, Bu-Soon
    • Journal of Environmental Health Sciences
    • /
    • 제38권6호
    • /
    • pp.493-502
    • /
    • 2012
  • Objectives: The purpose of this study is to investigate the mass concentration of nanoparticles and understand the characteristics of elements of heavy metal concentrations within nanoparticles in the air using Micro-Orifice Uniform Deposit Impactor Model-110 (MOUDI-110), based on indoor and outdoor air. Methods: This Study sampled nanoparticles using MOUDI-110 indoors (office) and outdoors at S University in Asan, Korea in order to reveal the concentration of nanoparticles in the air. Sampling continued for nine months (10 times indoors and 14 times outdoors) from March to November 2010. Mass concentrations of nanoparticle and concentrations of heavy metals (Al, Mn, Zn, Ni, Cu, Cr, Pb) were analyzed. Results: Indoors, geometric mean concentration of nanoparticles ranged in size from 0.056 ${\mu}m$ to 0.10 ${\mu}m$ and those of 0.056 ${\mu}m$ or less recorded 0.929 ${\mu}g/m^3$ and 1.002 ${\mu}g/m^3$, respectively. On the other hand, the levels were lower outdoors with 0.819 ${\mu}g/m^3$ and 0.597 ${\mu}g/m^3$. Mann-Whitney U tests showed that the difference between the indoors and the outdoors was statistically meaningful in terms of particles of 0.056 ${\mu}m$ or less (p<0.05) in size. These results are possibly influenced by the use of printers and duplicators as the factor that increased the concentration of nanoparticles. In seasonal concentration distribution, the level was higher during the summer compared to in the autumn. Those of 0.056 ${\mu}m$ or less in size presented a statistically meaningful difference during the summer (p<0.05). These results may be influenced by photochemical event as the factor that makes the levels high. Regarding zinc, among the other heavy metals, the fine particles ranged in size from 0.056 ${\mu}m$ to 0.10 ${\mu}m$ and those of 0.056 ${\mu}m$ or less recorded 1.699 $ng/m^3$ and 1.189 $ng/m^3$ in the outdoors. In the indoors, the levels were lower, with 0.745 $ng/m^3$ and 0.617 $ng/m^3$. Cr and Ni at the size of 0.056 ${\mu}m$ or less, both of which have been known to pose severe health effects, recorded higher concentrations indoors with 0.736 $ng/m^3$ and 0.177 $ng/m^3$, compared to 0.444 $ng/m^3$ and 0.091 $ng/m^3$ outdoors. By season, Zn, Ni, Cu and Pb posted a high level of indoor concentration during the fall. As for Cr, the level of concentration indoors was higher than outdoors both during the summer and the autumn. Conclusion: This study indicates the result of an examination of nano-sized particles and heavy metal concentrations. It will provide useful data for the determination of basic nanoparticle standards in the future.

Application of Principle in Metal-Ligand Complexation to Remove Heavy Metals;Time Effects (금속(金屬)-Ligand 착염형성(錯鹽形成)에 의한 중금속(重金屬) 제거(除去) 방법(方法)에 관한 연구(硏究);시간(時間)의 영향(影響))

  • Yang, Jae-E;Shin, Yong-Keon;Kim, Jeong-Je
    • Korean Journal of Environmental Agriculture
    • /
    • 제12권1호
    • /
    • pp.51-57
    • /
    • 1993
  • Objective of this research was to assess the influence of reaction time on the heavy metal-organic ligand complexation by employing kinetic models. Aqueous solutions of humic (HA) or fulvic acid (FA) were reacted with metal solutions with 1:1 ratio to form complexes. Efficiency of organic ligand on metal removal was determined by separating the precipitates from solution using $0.45\;{\mu}m$ filter paper. Complexation between Cu or Pb and HA or FA followed the first- or multiple first order kinetics, largely depending on metal concentration and kind of organic ligand. Amounts of precipitates were increased proportionally with reaction time but reached to quasiequilibrium where rate of precipitate formation was not varied with time. Copper-ligand complexation was, irrespective of ligand, fitted to the single first order kinetics at Cu concentrations lower than $300{\mu}M$, but this was fitted to the multiple first order kinetics at Cu concentrations higher than $300{\mu}M$. As increasing Cu concentrations, the precipitates formed more readily, judging from the increased rate constants (${\kappa}$). In the multiple first order kinetics, ${\kappa}$ was decreased as reaction steps proceeded. Most of Cu-ligand precipitates were formed within 15 min. FA precipitated Cu more rapidly than HA did. ${\kappa}$ for Pb-HA complexation was decreased but that for Pb-FA reaction was increased, as increasing Pb concentration. Most of Pb-organic ligand complexation occurred within 30 min. Afterwards, ${\kappa}$ values were relatively small and not affected much by time. Pb was precipitated by humic acid more readily than Cu when metal concnetrations were $200{\sim}300{\mu}M$. However, when metal concentrations were in the ranges of $400{\sim}500{\mu}M$, a reversed tendency was observed.

  • PDF

Evaluation of the Sediments Contamination in the Lake Sihwa (시화호 퇴적토의 오염도 평가 및 효과적 관리방안)

  • Kim, Seung-Jin;Bae, Woo-Keun;Shin, Kyung-Hoon;Choi, Dong-Ho;Baek, Seung-Chun;Yoon, Seung-Joon;Choi, Hyung-Joo
    • Journal of Soil and Groundwater Environment
    • /
    • 제12권4호
    • /
    • pp.16-24
    • /
    • 2007
  • An investigation on the polluted sediments in the Lake Sihwa and the benthos that inhabited on the sediments was conducted. Cost effective remediation alternatives were derived form the results of the investigation. The sediment samples taken from four sampling points out of thirteen showed relatively high heavy metal (particularly copper) concentrations which exceeded the Effects Range Low (ERL) of the National Oceanic and Atmospheric Administration, USA. The four sampling points were located in front of industrial complexes. Although the heavy metals appeared to have affected the growth of the benthos, the concentration of it did not exceed the criteria of dredging that were developed by Netherlands or the State of Washington, USA. However, contamination by organic matters and sulfur compounds was severe, which exceeded the criteria of dredging that were established in Japan. The sediments taken from the four sampling points which were contaminated with heavy metals showed higher organic matter content in general. The organic matters in the sediments depleted oxygen in summer, which appeared to be fatal to the benthos. A comprehensive analysis on the sediments, benthos, and other environmental impact from the contaminated sediments drew a conclusion that the benthonic environment of the Lake Sihwa needed a stepwise remediation, giving a particular emphasis on the clean up of the sediments upstram of the Lake which could cause odor problems to the nearby residential area.

Molecular/biochemical Biomarkers for Exposure to Hazardous Chemicals in the Water Environment and their Application to Freshwater Fish (유해물질 노출로 인한 분자.생화학적 바이오마커와 담수 어류에 대한 현장 적용성)

  • Kim, Jung-Kon;Park, Ye-Na;Kim, Woo-Keun;Kim, Ji-Won;Lee, Sung-Kyu;Choi, Kyung-Ho
    • Journal of Environmental Health Sciences
    • /
    • 제36권5호
    • /
    • pp.418-434
    • /
    • 2010
  • As concerns regarding water pollution grow, the need increases for a fast and accurate assessment of ecological risk. In this context, many studies have been conducted to identify biomarkers which can sensitively indicate exposure to and effects of various contaminants in a water environment. However, the utility of most such biomarkers in the real water environment is not yet validated. In this paper, we conducted a thorough review of publications that were related to developing or evaluating molecular and biochemical biomarkers of freshwater fish in ecological risk assessment, and evaluated whether these biomarkers of interest could link to the effects on higher biological levels, such as histopathology and above. Biomarkers of interest included those associated with metabolism, oxidative stress, reproduction and endocrine disruption, genotoxicity, and defense against heavy metal exposure. We found that, when used alone, most molecular and biochemical biomarkers are not sufficient to understand the effects of toxic substances in higher biological levels, due to defense or acclimation mechanisms of organisms. Moreover, some biomarkers respond not only to hazardous substances but also to the changes in water quality and disease outbreak. Molecular and biochemical biomarkers may be most useful in understanding the potential biological effects of toxic compounds when used in parallel with relevant endpoints of higher biological levels.

Effect of Sewage Sludge on the Yields and Chemical Properties of Soybean(Glycine max) and Carrot(Daucus carota) (하수슬러지 시용이 대두 및 당근의 수량과 화학적 특성에 미치는 영향)

  • Lee, In-Bog;Lim, Jae-Shin;Lim, Hyun-Taek;Chang, Ki-Woon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • 제4권1호
    • /
    • pp.53-60
    • /
    • 1996
  • This study was carried out to investigate the effects on the growth of soybean and carrot, and these uptake of inorganic components, after the application of sewage sludge disgested anaerobically at wastewater treatment plant for about 25 days. With the application of the sludge, some chemical properties of soil was improved and heavy metals, as Pb, Cd, Cr, As and Hg, in finally harvested crops were not detected. With an increase in the application of the sludge, the uptake of N, P, K, and Ca in carrot was increased and also in the yield of two crops. In related to the quality of carrot, however, application of unmatured sewage sludge showed to deteriorate the visual quality with an irregularity of carrot's surface, despite of the increase of ${\beta}$-carotene concentration with an increased application of the sludge. The results suggest that for a land application of sewage sludge it should be necessarily stabilized by means such as composting.

  • PDF

Study on the resistance of various herbaceous plants to the effect of heavy metals-responses of plants to soil treated with cadmium and lead- (草本植物의 重金屬 抵抗性에 關한 硏究 - Cadmium, Lead 處理 土壤에 의한 反應 -)

  • Kim, Byung-Woo;Park, Jong-Sun
    • The Korean Journal of Ecology
    • /
    • 제15권4호
    • /
    • pp.433-449
    • /
    • 1992
  • Three horticultural herbaceous plants and a natural herbaceous plant were tested to determine the growth responses, biomass and uptake of cadmium(cd), lead(pb) by application of cd and pb soil treatment in pot culture. The ecological effects on the growth of the plants were investigated to determine the tolerance for the heavy metal pollutants cd and pb. the marginal concentrain of cd treatment on the growth of the each plant was below the 1, 000 ppm treatment of cd. The marginal concentration of pb treatment was below the 1, 000ppm treatment of pb in cultivation of salvia splendens ker., celosia cristata l. and below the 3, 000ppm treatment of pb in cultivation of portulaca grandiflora hook., sedum saramentosum bunge. the resistance for cd of sedum saramentosum bunge, celosia criastata l., portulaca grandiflora hook. and salvia splendens ker. was in the listed order. The resistence for pb was in order of sedum saramentosum bunge, portulaca grandiflora hook. Salvia splendens ker.and celosia criastata l.stems. The flowering of portulaca grandiflora hook. was sustained in the pb 1, 000ppm treated group only. The higher the concentration of pb in the soil cultivated the plants was, the less the content of leaf chlorophy11 in each plant was. The number of stomata per unit leaf area was the highest in salvia splendens ker. and in order of celosia l., sedum saramentosum bunge., portulaca grandiflora hook., the higher the cd and pb concentration of cd and pb treatment was, the more the concent of cd and pb in the part of each plant increased. the content of cd and pb in the stems of salvia spiendens ker. was the highest in the 1, 000ppm-treated ground and in order of the roots, the leaves and the flowers.

  • PDF

Differentially Expressed Genes by Methylmercury in Neuroblastoma cell line using suppression subtractive hybridization (SSH) and cDNA Microarray

  • Kim, Youn-Jung;Chang, Suk-Tai;Yun, Hye-Jung;Ryu, Jae-Chun
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 한국환경독성학회 2003년도 춘계학술대회
    • /
    • pp.187-187
    • /
    • 2003
  • Methylmercury (MeHg), one of the heavy metal compounds, can cause severe damage to the central nervous system in humans. Many reports have shown that MeHg is poisonous to human body through contaminated foods and has released into the environment. Despite many studies on the pathogenesis of MeHg-induced central neuropathy, no useful mechanism of toxicity has been established so far. In this study, two methods, cDNA Microarray and SSH, were performed to assess the expression profile against MeHg and to identify differentially expressed genes by MeHg in neuroblastoma cell line. TwinChip Human-8K (Digital Genomics) was used with total RNA from SH-SY5Y (human neuroblastoma cell line) treated with solvent (DMSO) and 6.25 uM (IC50) MeHg. And we performed forward and reverse SSH method on mRNA derived from SH-SY5Y treated with DMSO and MeHg (6.25 uM). Differentially expressed cDNA clones were sequenced and were screened by dot blot and ribonuclease protection assay to confirm that individual clones indeed represent differentially expressed genes. These sequences were identified by BLAST homology search to known genes or expressed sequence tags (ESTs). Analysis of these sequences may provide an insight into the biological effects of MeHg in the pathogenesis of neurodegenerative disease and a possibility to develop more efficient and exact monitoring system of heavy metals as environmental pollutants.

  • PDF

Nutritive Quality of the Crude Organic Fertilizer Produced with Coastal Aquaculture-Ground Bottom Sediments, Organic Wastes and Alkaline Stabilizers (유기성 폐기물과 알칼리 안정화제가 첨가된 연안 양식장 퇴적물 조비료의 영양성분 조성)

  • 김정배;강창근;이근섭;박정임;이필용
    • Journal of Environmental Science International
    • /
    • 제11권12호
    • /
    • pp.1291-1298
    • /
    • 2002
  • To utilize coastal aquaculture ground bottom sediment in which concentrations of harmful pollutants are low and organic content is high as an organic fertilizer alkaline stabilizers such as CaO, Oyster shell, Mg(OH)$_2$ were added to the bottom sediment organic additives of livestock or food wastes. Nutritive qualities of crude fertilizers were measured to examine effects of alkaline stabilizers and organic waste additions. The Mg(OH)$_2$-added crude fertilizer had significantly lower total carbon(T-C) and nitrogen(T-N) content, reflecting the dilution effect due to great amount of Mg(OH)$_2$ addition. However, the addition of oyster shell had no significant effect on the T-C and T-N content of the fertilizer. $P_2O_5$ and $K_2$O content was considerably higher in the mixed sample of aquaculture ground bottom sediments and livestock wastes than in the mixture of the sediments and food wastes, resulting from higher $P_2O_5$ and $K_2$O content in livestock wastes. Addition of Mg(OH)$_2$ increased the content of MgO In the crude fertilizer but significantly reduced the content of other nutritive elements such as $P_2O_5$, $K_2$O and CaO. Addition of oyster shell as an alkaline stabilizer seemed to have the advantage of saving time and expenses far dryness due to its role as a modulator of water content. Moreover, additions of effect Mg(OH)$_2$ decreased the concentrations of heavy metals in the fertilizer by the dilution while additions of oyster shell had no influence on heavy metal concentrations in the fertilizer.

A Study on the Correlation between River Contamination Level and Ground Pollution Source through Korean Case Study (국내 사례분석을 통한 하천오염도와 지반오염원의 상관관계에 관한 연구)

  • Choi, Joohwan;Song, Wonjun;Lee, Junhwan
    • Journal of Korean Society of societal Security
    • /
    • 제3권1호
    • /
    • pp.51-60
    • /
    • 2010
  • This study measured for comparison and analysis the correlation of River pollution and Soil contamination, based on the results of previous research, and then in order to increase the efficiency of study, heavy metals which cause serious side effects was limited to the case among pollutants. This study focused on the rivers that near the Urban and industrial districts, for example, Nak-Dong river, An-Yang river, Tae-Hwa river and the rivers that near the farm land or pasture, for example, Yeong-San river, Mi-Ho river, then compare and analyze the degree of actual pollution as gathered the results of Previous research. Correlationship about pollutants of river near the Urban, industrial area and drainage basin its river has been proven, and this expected because of the strong influence by point pollution source. On the other hand, I can found the opposite relationship where the river near the farm land or pasture, and this probably because of the influence by nonpoint pollution source.

  • PDF

Biosorption Model and Factors for Removing Lead to Aureobasdium pullulans being Imperfect Fungus (불완전 균류 Aureobasdium pullulans으로 납을 제거하기 위한 인자들과 흡착모델)

  • Suh, Jung-Ho;Suh, Myung-Gyo;Chung, Kyung-Tae;Lee, Yong-Hee
    • Journal of Life Science
    • /
    • 제16권6호
    • /
    • pp.877-883
    • /
    • 2006
  • An alternative method to remove and recover heavy metals is biosorption based on metal-sequestering properties of natural or biological origin. In this study, the effects of factors such as temperature, pH, initial concentration of lead, and initial amount of biomass on biosorption of lead using Aureobasdium pullulans were investigated. A. pullulans has an excellent selectivity to remove lead than other heavy metals such as cadmium, chromium, nickel in pure and mixed solution. The optimum temperature of biosorption with A. pullulans was $40^{\circ}C$ and the amount of removal increased at high pH. The higher initial lead concentration or the lower cell dry weight, the higher amount of lead was adsorbed. The adsorption isotherm of lead was accorded with Freundlich model. The adsorption capacity and initial adsorption rate of living A. pullulans were about twice higher than that of dead one.