• Title/Summary/Keyword: Heavy machinery

Search Result 318, Processing Time 0.04 seconds

A Study on the Structural Integrity of Transportable Heavy-duty Tracking-mount (이동형 대하중 추적 마운트의 구조 건전성에 대한 연구)

  • Kim, Byung In;Son, Young Soo;Park, Cheol Hoon;Lee, Sung Hwi;Ham, Sang Yong;Jo, Sang Hyun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.5
    • /
    • pp.879-885
    • /
    • 2013
  • Satellites provide a lot of information and essay roles in the areas of defense and space observations. The precise distances to the satellites are measured by emitting and retro-reflecting a laser. For such surveys, satellite laser ranging (SLR) systems have been developed in different forms and for different areas. The structural integrity of the tracking mount is essential for it to be able to track a high-speed satellite precisely, overcoming the various external and internal disturbances and operating conditions. In this study, the analysis of a tracking mount was performed for weight, wind loads, and inertia loads in order to verify its soundness. The results of the comparison between aluminum and steel were analyzed in order to select the optimal material for the fork and main housing part. In addition, the natural frequency and mode shape were predicted. Optimal material selection and structural integrity will also be verified using static analysis.

Analysis of Bulking Agent Reduction Effect by using Previously Produced Compost (생산퇴비 재사용을 통한 수분조절재 절감효과 분석)

  • Lee, Min-Ho;Phonsuwan, Malinee;Moon, Byeong-Eun;Wang, Eun-Chul;Kim, Hyeon-Tae
    • Journal of agriculture & life science
    • /
    • v.51 no.4
    • /
    • pp.139-147
    • /
    • 2017
  • This study was carried out in order to reduce the amount of sawdust for recycling the generated manure from livestock farms, and to investigate the effects on the reducing usage of sawdust and quality of produced compost. To do this, a cylindrical horizontal composting device were used in the experiments and compost was analyzed for judging produce compost quality. The experiment was carried out separately under different cases of operational control conditions. The first case was produced by using sawdust and pig manure mixture(Test-1); the second case was produced by using sawdust, pig manure and the previously produced compost(Test-2). In the second case, Except for some heavy metal content, The water content and C/N ratio were found to be suitable for fertilizer process specification of the RDA(Rural Development Administration) and it was found to reduce the sawdust 1.25tons usage.

Centrifuge Model Tests on Trafficability of Very Soft Ground Treated with Geotextile and Sand Mat (토목섬유와 모래로 처리된 초연약지반의 장비주행성에 대한 원심모형실험)

  • Jun, Sang-Hyun;Lee, Jong-Ho;Yoo, Nam-Jae
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.3
    • /
    • pp.13-23
    • /
    • 2010
  • In this study, centrifuge model tests with 50 g gravitational condition were performed to evaluate the bearing capacity of very soft ground, improved by spreading geotextile and sand on the surface of ground, for the heavy machinery to be able to access. For undrained shear strength of ground model, prepared with the clay sampled from the field, being in the range of 3.1~11.7 kPa, bearing capacity tests were performed with the model footing and the loading system built to simulate the heavy machinery on the ground model treated with geotextile and sand. Test results were compared with theoretically and numerically evaluated ones. Test results about load-settlement curves showed that the bearing capacity increases with the increase of the undrained shear strength of ground. Punching shear or local shear failure was also observed. For a relatively low undrained shear strength of ground, settlement behavior is found to be crucial to evaluating the trafficability of machinery whereas bearing capacity becomes a dominant factor with the increase of undrained shear strength of ground. The method for assessing the bearing capacity of the ground related to trafficability of machinery is presented by acquiring the regression relationship between the contact pressure of machinery and settlements using load-settlement curves with the change of the undrained shear strength. Furthermore, results of numerical analyses about load-settlement relation are in relatively good agreement with those of centrifuge model test.

Spraying and Combustion Characteristics of Heavy Oil in the Gun Type Burner for Hot Air Heater (온풍난방기용 건타입 중유버너의 분사특성과 연소특성)

  • 김영중;유영선;장진택;윤진하;연태용
    • Journal of Biosystems Engineering
    • /
    • v.24 no.2
    • /
    • pp.107-114
    • /
    • 1999
  • To find the best combustion conditions in the heavy oil burner kinetic viscosity of heavy oil A, B and C at different temperature range, from 40 to 140$^{\circ}C$, and the droplet sizes of the heavy oils at different temperature and pump pressure were measured. And, combustion characteristics were investigated under the different conditions : two different heavy oil and three different oil temperature. At temperature of 70, 100, 130$^{\circ}C$ the kinetic viscosity of heavy oil A and B are 7.9, 5.7, 4.3 and 30.4, 13.7, 7.9cSt, respectively. The greatest and smallest viscosity were 7,455 cSt at C oil on 27$^{\circ}C$ and 4.26cSt at A oil on 140$^{\circ}C$. The magnitude of viscosity difference between at 100$^{\circ}C$ and 140$^{\circ}C$ under 6 cSt in cases of A and B oil, but more than 30cST on C oil. Of the droplet sizes, the biggest and smallest droplet size in A oil were 98$\mu\textrm{m}$ at oil temperature of 130$^{\circ}C$(4.3cSt), pump pressure of 1.57MPa and 72$\mu\textrm{m}$ at 70$^{\circ}C$(7.9cSt), 2.35MPa, respectively. It appeared that as spraying pressure increased the droplet size decreased, however, no distinct differences were found in the effects of kinetic viscosity on the droplet sizes of the test range. The best combustion performance was observed when droplet size, spraying pressure and oil temperature were 73$\mu\textrm{m}$, 2.35MPa and 70$^{\circ}C$ producing CO2 of 13.1%, CO of 13ppm and flue gas temperature of 250$^{\circ}C$ in A oil combustion For B oil, it was100$^{\circ}C$, 2.35MPa, 52$\mu\textrm{m}$, producing CO2 of 10ppm and flue gas temperature of 260$^{\circ}C$. In general, it appeared that better combustion results were observed in the smaller droplets produced burner condition.

  • PDF

Development of a Power-tiller TMF Mixer (동력경운기 견인형 TMF 배합기의 개발)

  • Jo, Gi-Hyeon;Lee, Jeong-Taek;Baek, Lee
    • Journal of Biosystems Engineering
    • /
    • v.28 no.2
    • /
    • pp.97-106
    • /
    • 2003
  • One of the obstructing factors against managing dairy fm has been heavy labor requirement for feeding dairy cows. A Power-tiller TMF mixer was developed to reduce the cost and to provide economic benefit. The TMF mixer was desisted by the feeding capacity of 20∼30 heads at a batch with various functioning systems of auger type mixer, delivery conveyer, weighing console, pipe heater type heating system, power transmission train and mounting trailer. According to the study resulted, it showed that 1,200rpm, 1,600rpm, 2,000rpm and 2,300rpm were 6ps. Bps, lops and 12ps respectively. and that reduced shaft output by 15%. On the fodder mixer attached powertiller, initial output was necessary large torque. And the heating system was maintaining uniform temperature 60$^{\circ}C$ relatively.

Numerical Prediction of Inlet Recirculation in Pumps

  • Lipej, Andrej;Mitrusevski, Dusko
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.3
    • /
    • pp.277-286
    • /
    • 2016
  • The development of heavy-duty process pumps, usually based on various design criteria, depends on the pump's application. The most important criteria are Q-H, efficiency and NPSH characteristics. Cavitation due to inlet recirculation is not often one of the design criteria, although many problems in pump operation appear because of inlet recirculation, when the operation range is from 0.5-0.8 $Q_{opt}$. The present paper shows that steady state CFD analysis of inlet recirculation can give quite good results for the design of new hydraulic shapes, which have been developed to expand operating range and to minimize the harmful influence of recirculation at part load. In this paper, the structures of inlet recirculation are presented, as well as detailed shapes of vortices between the blades for various operating regimes, axial velocity distribution at the impeller inlet, the experimental results of NPSH and efficiency characteristics of an existing and newly designed pump.

Flow Analyses Inside Jet Pumps Used for Oil Wells

  • Samad, Abdus;Nizamuddin, Mohammad
    • International Journal of Fluid Machinery and Systems
    • /
    • v.6 no.1
    • /
    • pp.1-10
    • /
    • 2013
  • Jet pump is one type of artificial lifts and is used when depth and deviation of producing wells increases and pressure depletion occurs. In the present study, numerical analysis has been carried out to analyze the flow behavior and find the performance of the jet pump. Reynolds-averaged Navier Stokes equations were solved and k-${\varepsilon}$ turbulence model was used for simulations. Water and light oil as primary fluids were used to pump water, light oil and heavy oil. The ratios of area and length to diameter of the mixing tube were considered as design parameters. The pump efficiency was considered to maximize for the downhole conditions. It was found that the increase in viscosity and density of the secondary fluid reduced efficiency of the system. Water as primary fluid produced better efficiency than the light oil. It was also found that the longer throat length increased efficiency upto 40% if light oil was used as primary fluid and secondary fluid viscosity was 350 cSt.

Experimental Analysis of Radiative Heat Interchange on Furnace Exit Plane of a Steam Boiler

  • Ahn, Kook-Young;Antonovsky, Vjacheslav-Ivanovich
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.239-247
    • /
    • 2001
  • Measured radiative heat fluxes on the furnace exit plane of a heavy duty power boiler of steam output 1650 T/h are discussed. A high-ash pulverized bituminous coal was used. Such measurements are necessary to improve heat fluxes inside a steam boiler furnace was manufactured. An extra small heat radiation sensor was placed in the water cooled head of the probe. The sensor had no direct contact with furnace gases and measured only the radiant energy. There was no exposure to convective heat transfer. With the radiometric probe, one can obtain a spherical indicatrix of radiation intensity as well as hemispherical radiative heat flux incident on any surface passing through a measuring point inside the furnace. Thus, the quantity of radiation energy, passing through the furnace exit plane, to the convective heating surfaces and the quantity of radiation energy going in the opposite direction were measured. A formula for relative radiative heat flux on the furnace exit plane has been proposed.

  • PDF

A Study on the Digital PI Control of Heavy Duty Handling Robot (초중량물 핸들링 로봇의 디지털 PI 제어에 관한 연구)

  • Ko, Chang-Min;Park, Seung-Kyu;Kim, Doo-Hyeong;Chung, Gwang-Jo
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1799-1800
    • /
    • 2008
  • 본 연구는 초중량물 핸들링로봇의 디지털 PI제어의 방법에 대하여 연구하는 목적을 갖는다. 6축 초중량물 로봇의 핵심요소인 2축과 3축만으로 구성되었으며, 제어기는 DSP를 사용하였다. DSP와 AC 서보 모터 드라이브간의 인터페이스 회로를 구성하여, PI제어기 알고리즘을 설계하여 직선보간 알고리즘에 적용하였다. 최종목적인 가반하중이 600Kg급 부하에도 강한 초중량물 핸들링 지능형 6축 로봇의 실현을 위해 원하는 경로를 부하의 영향에 받지 않는 고속.고응답성을 구현할 수 있는 2축 로봇제어에 대한 실험을 수행하였다. 위치.속도제어에 대한 알고리즘으로는 PID 제어기를 사용하였다. 본 연구의 의의는 초중량물 핸들링 로봇의 제어에 있어서 로봇의 설계 및 제작이 최적화되어 있다면 작은 부하용로봇의 제어와 크게 다를 바 없음을 보여주는데 있다.

  • PDF

A New Blade Profile for Bidirectional Flow Properly Applicable to a Two-stage Jet Fan

  • Nishi, Michihiro;Liu, Shuhong;Yoshida, Kouichi;Okamoto, Minoru;Nakayama, Hiroyasu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.4
    • /
    • pp.449-455
    • /
    • 2009
  • A reversible axial flow fan called jet fan has been widely used for longitudinal ventilation in road tunnels to secure a safe and comfortable environment cost-effectively. As shifting the flow direction is usually made by only switching the rotational direction of an electric motor due to heavy duty, rotor blades having identical aerodynamic performance for bidirectional flow should be necessary. However, such aerodynamically desirable blades haven't been developed sufficiently, since most of the related studies have been done from the viewpoint of unidirectional flow. In the present paper, we demonstrate a method to profile the blade section suitable for bidirectional flow, which is validated by studying the aerodynamic performances of rotor blades of a two-stage jet fan experimentally and numerically.