• 제목/요약/키워드: Heavy Metal ions

검색결과 506건 처리시간 0.024초

가교도를 가진 1-Aza-15-Crown-5-스틸렌-디비닐벤젠 수지 합성 (Resin Synthesis of 1-Aza-15-Crown-5-Styrene-divinylbenzene with Crosslink)

  • 박성규;김준태;노기환
    • 환경위생공학
    • /
    • 제17권1호
    • /
    • pp.63-68
    • /
    • 2002
  • 질소 주입하에 스틸렌과 디비닐벤젠의 양을 조절하면서 1%, 2% 및 5%의 가교도를 가진 공중합체를 합성하고 여기에 염화아연을 첨가하였다. 벤젠을 넣고 팽윤 시킨 다음 톨루엔 용매에서 요드화 칼륨과 21.93g의 1-aza-15-crown-5를 가하고 $55^{\circ}C$로 30시간 교반 환류하여 중감속 이온을 흡착 할 수 있는 기능성 수지를 합성하였다. 이들 수지는 가교도가 증가할수록 디비닐벤젠 함량이 증가하여 다공도가 작아져서 염소의 함량이 감소되고 이것이 치환 과정에서 거대고리 리간드에 영향을 주어 질소의 함량도 감소되었다. 그리고 기능성 합성수지의 형태는 수소와 염소 원자의 치환 반응으로 찌그러짐을 볼 수 있었다.

Recent Trend of Ultra-Pure Water Producing Equipment

  • Motomura, Yoshito
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 1996년도 제4회 하계분리막 Workshop (초순수 제조와 막분리 공정)
    • /
    • pp.121-147
    • /
    • 1996
  • Since 1980, the water quality of ultra-pure water has been rapidly improved, and presently ultra-pore water producing equipment for 64Mbit is in operation. Table 1 shows the degree of integration of DRM and required water quality exlmple. The requirements of the ultra-pure water for 64Mbit are resistivity: 18.2 MQ/cm or higher, number of particulates: 1 pc/ml or less (0.05 $\mu$m or larger). bacteria count: 0.1 pc/l or less. TOC (Total Organic Carbon, index of organic snbstance) : 1ppb or less, dissolved oxygen: 5ppb or less, silica: 0.5ppb or less, heavy metal ions: 5ppb or less. The effect of metals on the silicon wafer has been well known, and recently it has been reported that the existence of organic substance in ultra-pure water is closely related to the device defect, drawing attention. It is reported that if organic substance sticks to the natural oxidation film, the oxide film remaims on the organic substance attachment in the hydrofluoric acid treatment (removal of natural oxidation film). The organic substance forms film on the silicon wafer, and harmful elements such as metals and N.P.S., components contained in the organic substance and the bad effect due to the generatinn of silicon carbide cannot be forgotten. In order to remove various impurities in raw water, many technological develoments (membrane, ion exchange, TOC removal, piping material, microanalysis, etc.) have been made with ultra-pure water producing equipment and put to practical use. In this paper, technologies put to practical use in recent ultra-pure vater producing equimeut are introduced.

  • PDF

탄질 유기물과 케로젠의 풍화 : 탄소와 산소의 지화학적 순환 및 환경화학적 반응에 미치는 영향 (Weathering of coal and kerogen : implications on the geochmical carbon and oxygen cycle and the environmental geochemical reactions)

  • 장수범
    • 자원환경지질
    • /
    • 제32권1호
    • /
    • pp.101-111
    • /
    • 1999
  • Sedimentary organic matter, exposed to continental surficial environment, reacts with oxygen supplied from the atmosphee and forms carbon-containing oxidation products. Knowledge of the rate and mechanisms of sedimentary organic matter weathering is important because it is one of the major controls on atmospheric oxygen level through geologic time. Under the abiological conditions, the oxidation rate of coal organic matter by molecular oxygen is enhanced by the increase of oxygen concentration and temperature. At ambient temperature and pressure, aqueous coal oxidation results in the formation of dissolved $CO_2$ dissolved organic carbon and solid oxidation products which are all quantitatively significant reaction products. The effects of pH, ultraviolet light, and microbial activity on the weathering of sedimentary organic matter are poorly contrained. Based on the results of geochmical and environmental studies, it is believed that the photochemical reaction should play an important role in the decomposition and oxidation of sedimentary organic matter removed from the weathering profile. At higher pH conditions, the production rate of DOC can be accelerated due to base catalysis. These high molecular weight oranic matter can react with man-made pollutants such as heavy metal ions via adsorption/desorption or ion exchange reactions. The effect of microbial activity on the oxidative weathering of sedimentary organic matter is poorly understood and remains to be studied.

  • PDF

Evaluate Changes in Soil Chemical Properties Following FGD-Gypsum Application

  • Lee, Yong-Bok;Bigham, Jerry M.;Kim, Pil-Joo
    • 한국환경농학회지
    • /
    • 제26권4호
    • /
    • pp.294-299
    • /
    • 2007
  • Natural gypsum has been used as a soil amendment in the United States. However, flue gas desulfurization (FGD)-gypsum has not traditionally been used for agricultural purpose although it has potential benefit as a soil amendment. To expand use of FGD-gypsum for agricultural purpose, the effect of FGD-gypsum on soil chemical properties was investigated in the field scales. Application rates for this study were 0 (control), 1.1, and 2.2 Mg ha-1 of FGD-gypsum. After two year application, the soil samples were taken to 110 cm depth and sub-sampled at 10 cm intervals. The heavy metal contents in FGD-gypsum were lower than ceiling levels allowed by regulations for land-applied biosolids. Soil pH was not largely affected by FGD-gypsum application. Although degree of calcium (Ca) saturation in surface horizons increases only slightly with respect to the control, there is a clear decrease in exchangeable aluminum (Al). FGD-gypsum clearly increases the soil electrical conductivity (EC) with increasing application rate. Water-soluble Ca and sulfate is increased with FGD-gypsum application and these ions moved to a depth of at least 80 cm after only 2 years. We conclude that surface application of FGD-gypsum can mitigate toxicity of Al and deficiency of Ca in subsoil of acid soil.

오존에 의한 폐수처리에 관한 연구 -도금폐액의 CN이온 분해와 사진 폐수의 COD 처리- (Studies on the Decomposition of CN ion in the electroplating waste Water and COD Variation of photodeveloping Waste-water)

  • 김덕묵;이치종
    • 기술사
    • /
    • 제14권1호
    • /
    • pp.22-29
    • /
    • 1981
  • This study concernes the decomposition of cyanide ion in electroplating plant wastewater and COD variation of photodeveloping wastewater under various conditions. Determinations of CN- concentration were carried out by AgNO$_3$ titration method. The sample solutions were pretreated by passing ozone and decompositions were checked as a function of time for ozone treatment. Analysis of film developing wastewater was carried out by KMnO$_4$ method. Electroplating plant wastewater was also examined at various pH; decomposition rate of cyanide ion was found to increase at higher pH. Time required for the decomposition could be shortened by removing the heavy metal ions under alkaline condition. The effect of temperature on decomposition was studied at 40$^{\circ}$ and 60$^{\circ}C$. The result was better at 40$^{\circ}C$ although time for decomposition was almost same at both temperatures. Analysis of film developing wastewater revealed that COD decrease was faster during the first 1 to 2 hours. However, further decrease could not be effected. The existence of unknown special organics resistant to the decomposition was believed to be the reason.

  • PDF

A Novel Iron(III) Selective Membrane Electrode Containing a Tripodal Polycatacholamine as Sensor

  • Bera, Rati Kanta;Sahoo, Suban K;Baral, Minati;Kanungo, B.K.
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권10호
    • /
    • pp.3592-3596
    • /
    • 2011
  • A novel poly(vinylchloride)-based membrane sensor using $N^1$,$N^3$,$N^5$-tris(2-(2,3-dihydroxybenzylamino)-ethyl)cyclohexane-1,3,5-tricarboxamide (CYCOENCAT, L) as ionophore has been prepared and explored as $Fe^{3+}$ selective electrode. The membrane electrode composed of ionophore, poly(vinylchloride) and o-nitropheyloctyl ether in the optimum ratio 4:33:63 gave excellent potentiometric response characteristics, and displayed a linear log[$Fe^{3+}$] versus EMF response over a wide concentration range of $1.0{\times}10^{-5}-1.0{\times}10^{-1}$ M with super nernstian slope of 28.0 mV/decade and the detection limit of $8.0{\times}10^{-6}$ M. The proposed ion selective electrode showed fast response time (< 15 s), wide pH range (3.0-7.0), high non-aqueous tolerance (up to 20%) and adequate long life time (120 days). It also exhibited very good selectivity for $Fe^{3+}$ relative to a wide variety of alkali, alkaline earth, transition and heavy metal ions. Further, the analytical applicability of the sensor was tested as an indicator electrode in the potentiometric titration of $Fe^{3+}$ with EDTA.

Study of the Adsorbent-Adsorbate Interactions from Cd(II) and Pb(II) Adsorption on Activated Carbon and Activated Carbon Fiber

  • Kim, Dae Ho;Kim, Doo Won;Kim, Bo-Hye;Yang, Kap Seung;Lim, Yong-Kyun;Park, Eun Nam
    • 대한화학회지
    • /
    • 제57권1호
    • /
    • pp.104-108
    • /
    • 2013
  • The adsorption characteristics of Cd(II) and Pb(II) in aqueous solution using granular activated carbon (GAC), activated carbon fiber (ACF), modified ACF (NaACF), and a mixture of GAC and NaACF (GAC/NaACF) have been studied. The surface properties, such as morphology, surface functional groups, and composition of various adsorbents were determined using X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) measurements. The specific surface area, total pore volume, and pore size distribution were investigated using nitrogen adsorption, Brunauer-Emmett-Teller (BET), and Barrett-Joyner-Halenda (BJH) methods. In this study, NaACF showed a high adsorption capacity and rate for heavy metal ions due to the improvement of its ion-exchange capabilities by additional oxygen functional groups. Moreover, the GAC and NaACF mixture was used as an adsorbent to determine the adsorbent-adsorbate interaction in the presence of two competitive adsorbents.

Tetrahymena sp.의 분리와 물리화학적 요인이 성장에 미치는 영향 (Effects of physical and chemical factors on the growth of Tetrahymena sp. isolate)

  • 김종진;유재근;이형환
    • 미생물학회지
    • /
    • 제26권4호
    • /
    • pp.348-354
    • /
    • 1988
  • 폐수에서 분리한 Tetrahymena sp. 는 크기는 50~$70{\mu}m$이고, 타원형이며, 앞부분은 약간 뽀죽한 형태였다. 구강, Kineto some, 대핵, 수축포와 식포 등을 선명히 광학현미경으로 관찰 할 수 있었다. 이분법에 의하여 세포분열을 했고, 대장균세균을 먹이로 이용했다. 분리한 Tetrahymena sp. 는 $20^{\circ}C$, $25^{\circ}C$, 그리고 pH7에서 9, 그리고 담수에서 증식이 제일 높았다. $Zn^{++}/l$은 0.7mg/l 농도까지는 증식억제를 거의 하지 않았고, $Cd^{++}/l$농도가 0.3mg/l 그리고 $Cu^{++}/l$가 0.1mg/l 이상에서는 증식을 억제하였다.

  • PDF

용액 공정을 이용한 Indium-Zinc-Oxide 박막 기반 저항 스위칭 메모리의 전기적 특성 (Electrical Characteristics of Resistive-Switching-Memory Based on Indium-Zinc-Oxide Thin-Film by Solution Processing)

  • 김한상;김성진
    • 한국전기전자재료학회논문지
    • /
    • 제30권8호
    • /
    • pp.484-490
    • /
    • 2017
  • We investigated the rewritable operation of a non-volatile memory device composed of Al (top)/$TiO_2$/indium-zinc-oxide (IZO)/Al (bottom). The oxygen-deficient IZO layer of the device was spin-coated with 0.1 M indium nitrate hydrate and 0.1 M zinc acetate dehydrate as precursor solutions, and the $TiO_2$ layer was fabricated by atomic layer deposition. The oxygen vacancies IZO layer of an active component annealed at $400^{\circ}C$ using thermal annealing and it was proven to be in oxygen vacancies and oxygen binding environments with OH species and heavy metal ions investigated by X-ray photoelectron spectroscopy. The device, which operates at low voltages (less than 3.5 V), exhibits non-volatile memory behavior consistent with resistive-switching properties and an ON/OFF ratio of approximately $3.6{\times}10^3$ at 2.5 V.

Equilibrium and Kinetic Studies of the Biosorption of Dissolved Metals on Bacillus drentensis Immobilized in Biocarrier Beads

  • Seo, Hanna;Lee, Minhee;Wang, Sookyun
    • Environmental Engineering Research
    • /
    • 제18권1호
    • /
    • pp.45-53
    • /
    • 2013
  • Biocarrier beads with dead biomass, Bacillus drentensis, immobilized in polymer polysulfone were synthesized to remove heavy metals from wastewater. To identify the sorption mechanisms and theoretical nature of underlying processes, a series of batch experiments were carried out to quantify the biosorption of Pb(II) and Cu(II) by the biocarrier beads. The parameters obtained from the thermodynamic analysis revealed that the biosorption of Pb(II) and Cu(II) by biomass immobilized in biocarrier beads was a spontaneous, irreversible, and physically-occurring adsorption phenomenon. Comparing batch experimental data to various adsorption isotherms confirmed that Koble-Corrigan and Langmuir isotherms well represented the biosorption equilibrium and the system likely occurred through monolayer sorption onto a homogeneous surface. The maximum adsorption capacities of the biocarrier beads for Pb(II) and Cu(II) were calculated as 0.3332 and 0.5598 mg/g, respectively. For the entire biosorption process, pseudo-second-order and Ritchie second-order kinetic models were observed to provide better descriptions for the biosorption kinetic data. Application of the intra-particle diffusion model showed that the intraparticle diffusion was not the rate-limiting step for the biosorption phenomena. Overall, the dead biomass immobilized in polysulfone biocarrier beads effectively removed metal ions and could be applied as a biosorbent in wastewater treatment.