• 제목/요약/키워드: Heavy Metal ions

검색결과 506건 처리시간 0.032초

Streptomyces subrutilus P5의 철 함유 Superoxide Dismutase의 중금속 격리에 의한 세균의 중금속 저항성 증가 (Iron Containing Superoxide Dismutase of Streptomyces subrutilus P5 Increases Bacterial Heavy Metal Resistance by Sequestration)

  • 김재헌;한광용;정호진;이정남
    • 미생물학회지
    • /
    • 제50권3호
    • /
    • pp.179-184
    • /
    • 2014
  • Streptomyces subrutilus P5가 생산하는 철 함유 superoxide dismutase (FeSOD)에 의한 중금속 독성의 완화를 조사하였다. 0.1 mM의 납이온이 120분 처리되면 E. coli $DH5{\alpha}$의 생존율이 7%에 불과 하지만 $0.1{\mu}M$의 정제된 천연 FeSOD가 첨가되면 생존율이 39%로 높아졌다. 이러한 해독작용은 0.01 mM의 구리이온에 대해서도 나타나며(생존율이 6%에서 50%로 증가) 그 효과는 EDTA보다 강하였다. 6xHis-tagged FeSOD를 생산하는 재조합 E. coli M15[pREP4]는 0.1 mM의 납 이온이 60분 처리된 후의 생존율이 3%에서 19%로 증가하였다. 6xHis-tagged FeSOD는 분자당 123개의 납과 결합하였다. 따라서 FeSOD가 중금속을 세포와의 접촉으로부터 격리함으로써 중금속이 오염된 환경에서 세균의 생존력을 증가시킨 것으로 사료된다.

수피조성분에 의한 중금속 흡착 (Adsorption of Heavy Metal Ions by Constituents of Bark)

  • 백기현;최인규;신금
    • Journal of the Korean Wood Science and Technology
    • /
    • 제24권3호
    • /
    • pp.51-56
    • /
    • 1996
  • The Bark lignin(alkali- and acid lignin), bark extractives(hot water-and $Na_2SO_3$ extractives) of Quercus acutissima and Pinus densiflora, and flavonoids were used to detect heavy metal adsorption. The adsorption ratio of heavy metals by lignin was assigned for 40 to 50%, but was not dependent on lignin kinds. However, in case of the addition of light metals such as $Ca^{++}$ and $Mg^{++}$ to lignin the adsorption ratio was increased by 20 to 40%, and $Pb^{++}$ was almost completely adsorbed. On hot water extractives, the adsorption ratio was very low because the substrate was water-soluble, so the substrate should be water-insoluble to adsorb the heavy metals. However, the adsorption ratios of $Cd^{++}$ and $Pb^{++}$ on $Na_2SO_3$ extractives were significantly increased, while those of $Zn^{++}$ and $Cu^{++}$, were similar to lignin. When four kinds of heavy metals were treated to $Na_2SO_3$ extractives together, more than 97% of $Pb^{++}$ and $Cu^{++}$ was adsorbed_ and $Zn^{++}$ was more adsorbed by 40%, and $Cd^{++}$ was not changed, comparing with the case that on kind of heavy metal was treated. There were differences between adsorption ratio of the kinds of flavonoids and heavy metals, and the adsorption ratio of heavy metals was assigned to 20 to 45% per 0.1g flavonoid.

  • PDF

유기 리간드 존재하에서 $FeS_{(S)}$의 중금속 제거 특성 연구 (Studies on the Heavy Metal Removal Characteristics of $FeS_(S)$ in the Presence of Organic Ligand)

  • 박상원;박병주
    • 한국환경과학회지
    • /
    • 제8권3호
    • /
    • pp.411-417
    • /
    • 1999
  • The interfacial chemical behavior, lattice exchange and dissolution, of $FeS_{(S)}$ as one of the important sulfide minerals was studied. Emphases were made on the surface characterization of hydrous $FeS_{(S)}$, the lattice exchange of Cu(II) and $FeS_{(S)}$, and its effect on the dissolution of $FeS_{(S)}$, and also affect some organic ligands on that of both Cu(II) and $FeS_{(S)}$. Cu(II) which has lower sulfide solubility in water than $FeS_{(S)}$ undergoes the lattice exchange reaction when Cu(II) ion contacts $FeS_{(S)}$ in the aqueous phase. For heavy metals which have higher sulfide solubilities in water than $FeS_{(S)}$, these metal ions were adsorbed on the surface of $FeS_{(S)}$. Such a reaction was interpreted by the solid solution formation theory. Phthalic acid(a weak chelate agent) and EDTA(a strong chelate agent) were used to demonstrate the effect of organic lignads on the lattice exchange reaction between Cu(II) and $FeS_{(S)}$. The $pH_{zpc}$ of $FeS_{(S)}$ is 7 and the effect of ionic strength is not showed. It can be expected that phthalic acid has little effect on the lattice exchange reaction between Cu(II) and $FeS_{(S)}$. whereas EDTA has very decreased the removal of Cu(II) and $FeS_{(S)}$. This study shows that stability of sulfide sediments was predicted by its solubility. The pH control of the alkaline-neutralization process to treat heavy metal in wastewater treatment process did not needed. Thereby, it was regarded as an optimal process which could apply to examine a long term stability of marshland closely in the treatment of heavy metal in wastewater released from a disussed mine.

  • PDF

복수광산 주변 중금속 오염 토양의 분광학적 특성 (Spectral Characteristics of Heavy Metal Contaminated Soils in the Vicinity of Boksu Mine)

  • 신지혜;유재형;정용식;김세영;고상모;박계순
    • 한국광물학회지
    • /
    • 제29권3호
    • /
    • pp.89-101
    • /
    • 2016
  • 본 연구는 폐금속광산인 복수광산 주변토양을 대상으로 X선형광분석법, X선회절분석법 및 휴대용 분광계를 이용하여 토양 내 광물조성을 확인하고 비소, 납, 아연, 구리, 카드뮴 등의 중금속오염 정도에 따른 분광특성을 고찰하였다. 그 결과 대조군 시료를 제외한 모든 시료에서 토양오염대책기준을 초과하였다. X선회절분석 결과 모든 토양시료에서 석영, 고령토 그리고 스멕타이트 군의 광물이 검출되었고 중금속은 점토광물에 흡착하여 존재함을 확인하였다. 분광분석을 통해 대조군시료와 중금속 오염시료의 분광곡선을 분석한 결과 토양 내 중금속 함량이 증가함에 따라 근적외선대역과 단파적외선의 단파장 영역에서 반사도가 감소함을 확인하였다. 또한 흡광깊이에 따른 오염도와의 상관성을 고려하여 본 결과 점토광물의 흡광특성인 2312 nm와 2380 nm에서 점토광물에 의한 중금속흡착에 따라 오염도가 높을수록 흡광깊이가 감소하는 특징을 보인다. 이는 분광학적 특성이 중금속의 오염도와 상당한 상관성이 있음을 지시한다.

괭생이 모자반에 의한 수중 중금속 Cd(II), Pb(II) 이온의 제거 (Removal of Heavy Metals, Cd(II) and Pb(II) Ions in water by Sargassum Herneri)

  • 박광하;박미아;장훈;김은경;김영하
    • 분석과학
    • /
    • 제12권3호
    • /
    • pp.196-202
    • /
    • 1999
  • 갈조류인 Sargassum horneri를 중금속 흡착제로 사용하여 중금속 Cd(II) 및 Pb(II)이온을 제거하였다. Sargassum horneri는 동해안에서 채취하였고, 풍건 건조시켜 40~60 mesh의 입자 크기로 흡착제를 만들어 사용하였다. batch법은 진탕 시간에 따른 흡착량을 측정함으로써 흡착속도를 조사하였고, column법은 해조 분말을 충진 시킨후 일정농도의 중금속용액을 1 mL/min의 속도로 흘려보내면서 흡착시키고 흡착량을 알아 보았다. 중금석 흡착에 미치는 pH의 영향은 batch법과 column법 모두, pH 10.5>7.0>3.5순으로 나타났다. Pb(II)이온이 Cd(II)이온보다 높은 흡착량을 보였다. 특히 batch법에서는 모든 pH의 조건하에서 5분이내에 최대 흡착량에 도달하였다. 회수율은 batch법에 의해 흡착된 중금속의 회수율이 column법에 의해 흡착된 중금속의 회수율 보다 조금 높게 나타났다.

  • PDF

과황산나트륨을 이용한 유기 오염물 산화와 영향인자 평가 (Evaluation of Affecting Factors on the Ferrous Catalyzed Sodium Persulfate Oxidation for the Destruction of Organic Pollutant)

  • 윤여복;박해미;고성환;고석오
    • 한국물환경학회지
    • /
    • 제25권1호
    • /
    • pp.151-158
    • /
    • 2009
  • The objective of this study was to determine on optimum ratio of oxidant and catalyst and to evaluate affecting factors such as anions and cations on persulfate oxidation of organic pollutant. Fe(II) activated the persulfate anion to produce a sulfate free radicals and thus effectively used to degrade the target organic pollutant in aqueous system. The chloride ions reacted with sulfate radical produced the $Cl^{\cdot}$ atom and had positive effects on the oxidation of organic pollutant at the initial stage. However, it was observed that chloride ions had the scavenging effects on the rate of oxidation of organic pollutant. Cations and some heavy metals were partly able to activate the persulfate anion to generate a sulfate free radical. However, high levels of cations inhibited the oxidation of organic pollutant.

적니 침출슬러지를 재활용한 흡착제의 제조 (Preparation of Adsorbents Reutilizing the Leached Sludge of Red Mud)

  • 이재록;황인국;배재흠
    • 청정기술
    • /
    • 제12권3호
    • /
    • pp.171-174
    • /
    • 2006
  • 본 연구진이 개발한 적니응집제를 제조하는 과정에서 발생하는 침출슬러지를 재활용하여 중금속이온 제거용 흡착제를 제조하였다. 침출슬러지 10 g에 kaolin 1 g, sodium silicate solution 2 g을 혼합하여 펠�� 형태로 성형한 후 $600^{\circ}C$에서 2시간 동안 열처리하여 흡착제를 제조하였다. 회분식 흡착실험을 한 결과, 본 연구에서 제조된 흡착제는 $Pb^{2+}$ 이온에 대하여 우수한 흡착성능을 가졌다.

  • PDF

Simultaneous Determination of Tin, Nickel, Lead, Cadmium and Mercury in Cigarette Material by Solid Phase Extraction and HPLC

  • Hu, Qun;Yang, Guangyu;Ma, Jing;Liu, Jikai
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권10호
    • /
    • pp.1433-1436
    • /
    • 2003
  • A new method for the simultaneous determination of heavy metal ions in cigarette material by microwave digestion and reversed-phase high-performance liquid chromatography (RP-HPLC) has been developed. The cigarette material was digested by microwave digestion. Lead, cadmium, mercury, nickel and tin ions in the digested samples were pre-column derivatized with tetra-(2-chlorophenyl)-porphyrin ($T_2$-CPP) to form color chelates, which were then enriched by solid phase extraction with a $C_{18}$ cartridge. The chelates were separated on a Waters Xterra$^{TM}RP_{18}$ column by gradient elution with methanol (containing 0.05 mol/L pyrrolidine-aceticacid buffer salt, pH = 10.0) and acetone (containin0.05 mol/L pyrrolidine-acetic acid buffer salt, pH = 10.0)as mobile phase at a flow rate of 0.5mL/min and analyzed with a photodiode array detector from 350-600 nm. The detection limits of lead, cadmium, mercury, nickel and tin were 4,3,3,8 and 5 ng/L, respectively, in the original samples. This method was afforded good results.

Characterization of Stress Responses of Heavy Metal and Metalloid Inducible Promoters in Synechocystis PCC6803

  • Blasi, Barbara;Peca, Loredana;Vass, Imre;Kos, Peter B.
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권2호
    • /
    • pp.166-169
    • /
    • 2012
  • In several biotechnological applications of living bacterial cells with inducible gene expression systems, the extent of overexpression and the specificity to the inducer are key elements. In the present study, we established the concentration ranges of $Zn^{2+}$, $Ni^{2+}$, $Co^{2+}$, ${AsO_2}^-$, and $Cd^{2+}$ ions that caused significant activation of the respective promoters of Synechocystis sp. without concomitant unspecific stress responses. The low expression levels can be increased up to 10-100-fold upon treatments with $Cd^{2+}$, ${AsO_2}^-$, $Zn^{2+}$, and $Co^{2+}$ ions and up to 800-fold upon $Ni^{2+}$ treatment. These results facilitate the development of conditional gene expression systems in cyanobacteria.

Removal of Manganese and Copper from Aqueous Solution by Yeast Papiliotrema huenov

  • Van, Phu Nguyen;Truong, Hai Thi Hong;Pham, Tuan Anh;Cong, Tuan Le;Le, Tien;Nguyen, Kim Cuc Thi
    • Mycobiology
    • /
    • 제49권5호
    • /
    • pp.507-520
    • /
    • 2021
  • Papiliotrema huenov was previously reported to be highly tolerant of a range of extremely toxic heavy metals. This study aimed to identify the potential of P. huenov to remove manganese and copper from aqueous solution. Physical conditions which affect removal of Mn(II) and Cu(II) were determined. Optimal temperature for adsorption of both metal ions was 30 ℃, and optimal pH for maximum uptake of Mn(II) and Cu(II) were 5 and 6, respectively. Under these conditions, living cells of P. huenov accumulated up to 75.58% of 110 mg/L Mn(II) and 70.5% of 128 mg/L Cu(II) over 120 h, whereas, the removal efficiency of metal ions by dead cells over 1 h was 60.3% and 56.5%, respectively. These results indicate that living cells are more effective than dead biomass for bioremediation, but that greater time is required. The experimental data extends the potential use of P. huenov in biosorption and bioaccumulation of toxic heavy metals to copper and manganese, two of the most common industrial contaminants.