• Title/Summary/Keyword: Heavy Metal ions

Search Result 502, Processing Time 0.03 seconds

Studies on Adsorption Behaviour for Heavy Metal Ions from Waste Water Using Eco-philic Cellulose Derivatives (환경친화형 셀룰로오스계 유도체의 합성 및 폐수내 중금속 이온 흡착거동 연구)

  • Lee, Soon-Hong;Bae, Joong-Don
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.11
    • /
    • pp.1146-1152
    • /
    • 2005
  • Graft copolymers were synthesized from methylcellulose(MC) and acrylic acid(AA) with active carboxyl groups in the presence of potassium persulfate($K_2S_2O_8$) initiator to enhance adsorption capacity of toxic heavy metal such as $Pb^{2+}$ and $Cu^{2+}$ from wastewater. The resulting grafted copolymers(MC-g-AA/PAA) were mixture of the graft copolymers from MC and AA(MC-g-AA) and polyacrylic acid homopolymers(PAA). The degree of palling was increased with rising concentration of monomer and initiator under the reaction conditions at $60^{\circ}C$, 3 hrs. The water insoluble property of MC-g-AA showed more than 19.7% degree of grafting. So that it could be an adsorbent of heavy metals. Adsorption characteristics of the MC-g-AA were evaluated depending on the degree of grading, pH of wastewater, adsorption time, dosage of MC-g-AA and concentration of heavy metals in the different conditions. Degree of grafting, and initial concentration of heavy metal ions increased, the adsorption amount of $Pb^{2+}$ and $Cu^{2+}$ increased, but added MC-g-AA increased, the adsorption amount per unit weight of $Pb^{2+}$ and $Cu^{2+}$ decreased. The MC-g-AA showed the high $Pb^{2+}$ and $Cu^{2+}$ adsorption amount in the range pH $4{\sim}6$. Also all of $Pb^{2+}$ and $Cu^{2+}$ ions reached in adsorption equilibrium in neighborhood 4 hours. The adsorption of heavy metals described by Freundlich isotherm, it was determined the value of l/n of $Pb^{2+}$ and $Cu^{2+}$ that 0.4294 and 0.3453, respectively.

A Study on the Adsorption Kinetics of the Heavy Metals, Cd(II) and Pb(II) Ions by the Uiva Pertusa and Hizakia Fusiformis (구멍갈파래 및 톳에 대한 Cd(II), Pb(II) 이온의 흡착속도에 관한 연구)

  • Park, Kwang-Ha;Park, Mi-A;Kim, Ki-Hong;Kim, Young-Ha
    • Analytical Science and Technology
    • /
    • v.12 no.5
    • /
    • pp.360-369
    • /
    • 1999
  • In this research, a study of adsorption kinetics of heavy metal ions on the Ulva pertusa and Hizakia fusiformis which is aiming at removing metal ions from water or every kind has been carried out. During the process of this research. Adsorption kinetics of Cd(II) and Pb(II) ions by the Ulva pertusa and Hizakia fusiformis, within five minutes reached at the maximum adsorption amount. The adsorption amoum by Ulva pertusa was more than the other. Adsorption ratio by Ulva pertusa were 15.0~100% of Cd(II) and 39.2~82.5% of Pb(II). Adsorption ratio by the Hizakia fusiformis were 18.3~100% of Cd(II) and 56.4~94.7% of Pb(II). Additionally, recovery ratio or Cd(II) from the Ulva pertusa presents 75.0~83.6% and that of Pb(II) ions presents 79.1~85.5%. Also, recovery ratio of Cd(II) from Hizakia fusiformis fusiformis were 66.7~85.0% of Cd(II) ions and 77.6~83.9% of Pb(II) ions respectively. As a result of this research. adsorption amount of Cd(II) and Pb(II) ions by Ulva pertusa was more than it by Hizakia fusiformis.

  • PDF

Recent Progress on Adsorptive Removal of Cd(II), Hg(II), and Pb(II) Ions by Post-synthetically Modified Metal-organic Frameworks and Chemically Modified Activated Carbons

  • Rallapalli, Phani Brahma Somayajulu;Choi, Suk Soon;Ha, Jeong Hyub
    • Applied Chemistry for Engineering
    • /
    • v.33 no.2
    • /
    • pp.133-144
    • /
    • 2022
  • Fast-paced industrial and agricultural development generates large quantities of hazardous heavy metals (HMs), which are extremely damaging to individuals and the environment. Research in both academia and industry has been spurred by the need for HMs to be removed from water bodies. Advanced materials are being developed to replace existing water purification technologies or to introduce cutting-edge solutions that solve challenges such as cost efficacy, easy production, diverse metal removal, and regenerability. Water treatment industries are increasingly interested in activated carbon because of its high adsorption capacity for HMs adsorption. Furthermore, because of its huge surface area, abundant functional groups on surface, and optimal pore diameter, the modified activated carbon has the potential to be used as an efficient adsorbent. Metal-organic frameworks (MOFs), a novel organic-inorganic hybrid porous materials, sparked an interest in the elimination of HMs via adsorption. This is due to the their highly porous nature, large surface area, abundance of exposed adsorptive sites, and post-synthetic modification (PSM) ability. This review introduces PSM methods for MOFs, chemical modification of activated carbons (ACs), and current advancements in the elimination of Pb2+, Hg2+, and Cd2+ ions from water using modified MOFs and ACs via adsorption.

Antimicrobial Effect of Metal tons Substitution to HAp, Zeolite (HAp, Zeolite에 여러 금속 Ion 치환시 나타나는 항균효과)

  • Kim, Yun-Jong;Kim, Taek-Nam;Kim, Sang-Bae;Jo, Seong-Baek;Jo, Geon-Jun;Lee, Tae-Hyeong
    • Korean Journal of Materials Research
    • /
    • v.11 no.2
    • /
    • pp.120-125
    • /
    • 2001
  • Generally, hydroxyapatite(HAp), zeolite, carbon molecular sieve , activated carbon and alumina are used as heavy metal ions adsorption materials. Among those adsorption materials, HAp which has good positive ion-exchange ability with metal ion, and zeolite are utilized in wastewater treatment. Most of water pollutions are caused by hazardous heavy metals ions as well as bacteria in waste water. In this study, a adsorption materials (HAP and zeolite) are ion-exchanged with a well known antimicrobial metal ions, such as $Ag^+,\;Cu^{2+},\;and\;Zn^{2+}$, in order to give a adsorption of heavy metal ions and a killing effects of bacteria. The antimicrobial effects of adsorption materials are observed using by E. Coli. The results show that there is a complete antimicrobial effect in the adsorption materials with $Ag^+$ at the concentration of $1{\times}10^{-4}$cell/$m\ell$ of E. Coli until 24 hours. However, there is not good antimicrobial effects in the adsorption materials with $Cu^{2+},\;and\;Zn^{2+}$ substitution. Feng et. al. showed the denaturation effects of silver ions which induces the condensed DNA molecules and losing their replication abilities.

  • PDF

Fundamental study on volume reduction of heavy metal-contaminated soil by magnetic separation

  • Konishi, Yusuke;Akiyama, Yoko;Manabe, Yuichiro;Sato, Fuminobu
    • Progress in Superconductivity and Cryogenics
    • /
    • v.22 no.2
    • /
    • pp.1-6
    • /
    • 2020
  • Large-scale civil engineering works discharge a large amount of soil suspension contaminated with natural heavy metals. Most of the heavy metal ions due to industrial activities and minings are accumulated in the soils and the sediments of lakes and inner bays through the rivers. It is necessary to remove heavy metals from the soils and the sediments, because some of these heavy metals, such as arsenic and cadmium, have significant biological effects even in small amounts. This study proposes a new volume reduction method of the contaminated soils and sediments by superconducting magnetic separation. Our process can remove the specific minute minerals selectively, which adsorbs heavy metals depending on pH. As a fundamental study, the adsorption behaviors of arsenic and cadmium on minute minerals as a function of pH were investigated, and the adsorption mechanism was discussed based on the crystal structure and pH dependence of surface potential in each minute minerals.

산업부산물을 이용한 중금속 제거효율에 관한 연구

  • 권용삼;이기호;박준범;이상훈;박종범
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.431-434
    • /
    • 2003
  • Environmental pollution problems due to the wastes from various industrial facilities and activities have become a serious issue. The specific problem associated with heavy metals in the environment is their accumulation in the food chain and their persistence in nature. Present work investigates the possible uses of by-products for the removal of heavy metal ions. Heavy metals used in these studies were cadmium, lead and copper. Experiments were conducted with by-products such as oyster shell and fly ash to evaluate their sorption characteristics. The results of the study indicate that oyster shell can be properly used as an adsorbent for heavy metals because of its outstanding removal rate.

  • PDF