• 제목/요약/키워드: Heavy Metal Pollution

검색결과 511건 처리시간 0.026초

반응물질이 도포된 연직배수재를 활용한 인천지역의 중금속 오염토양 정화에 관한 연구 (Remediation Efficiency Evaluation of Heavy Metal Contaminated Soils by Reactive Material Covered Vertical Drains in Incheon)

  • 신은철;어재원;김기성
    • 한국지반신소재학회논문집
    • /
    • 제14권2호
    • /
    • pp.45-55
    • /
    • 2015
  • 인천지역은 1960년대 경제개발계획과 함께 중공업위주의 임해공업단지와 항만시설, 해안매립에 의한 공업용지가 조성되었고, 이러한 산업단지는 준설한 실트질 모래로 매립되어 저투수성 지질특성을 가지고 있다. 따라서, 본 연구에서는 인천의 지질특성에 적합한 토양오염 정화를 위해 친환경 소재로 개발된 배수재의 필터에 중금속 흡착에 효과적인 제올라이트를 도포하여 중금속흡착능력을 평가하였다. 오염물질은 토양오염 조사 자료와 문헌 조사를 통해 현재 공업 산업단지에서 가장 문제가 되고 있는 구리(Cu), 납(Pb), 카드뮴(Cd)으로 설정하였고, Visual Modflow를 이용한 수치해석을 통해 가장 효율적인 배수재 타설 간격 및 형식을 제시하였다.

시화산업단지 강우유출수 내 중금속 오염도 평가 및 오염원 추적 연구 (Characteristics and Assessment of Metal Pollution and their Potential Source in Stormwater Runoff from Shihwa Industrial Complex, Korea)

  • 이지현;정혜령;최진영;나공태
    • 생태와환경
    • /
    • 제53권1호
    • /
    • pp.91-101
    • /
    • 2020
  • 본 연구에서는 특별관리해역인 시화호 유역의 산업단지 하천에 강우 시 비점오염의 형태로 유입되는 중금속의 유출 특성 파악 및 오염원 파악을 하천 토구를 통해 배출되는 강우유출수 내 용존 및 입자성 중금속(Cr, Co, Ni, Cu, Zn, As, Cd, Pb)을 조사하였다. 용존성 Co와 Ni은 강우 초반에 고농도로 유출된 후 시간에 따라 감소하는 결과를 보였으나, 대부분의 원소는 조사시기별 강우량 및 유량 변화에 따라 각각 다른 특징을 보였다. 입자성 중금속의 경우, 시간에 따른 부유물질의 농도 변화와 유사한 경향을 보였다. 강우유출수 내 존재하는 중금속 중 Co, Ni, Zn는 용존 상태로 유출되는 비율이 높았고, Cr, Cu, Pb은 입자상 유출 비율이 상대적으로 높았다. 입자 상태로 유출되는 중금속의 인위적 오염도를 평가하기 위해 농집지수를 계산한 결과, Cu, Zn, Cd은 very highly polluted에 해당하는 심각한 오염수준으로 나타났다. 연구지역인 3간선수로 유역 인근의 도로먼지 중 125 ㎛ 이하에서의 중금속 농도와 비교한 결과, 강우유출수 내 Cu, Zn, Cd의 중금속이 금속제조관련 시설에서 절삭 혹은 가공 중에 발생하여 산업시설 표면에 축적되어 있는 금속물질이 강우유출수와 함께 수환경으로 유출된 것을 알 수 있었다. 강우유출수 내 총중금속 평균 유출부하량은 1회 강우 시 Cr 128 g, Co 12.35 g, Ni 98.5 g, Cu 607.5 g, Zn 8,429.5 g, As 6.95 g, Cd 3.7 g, Pb 251.75 g으로 금속제조와 관련된 산업시설이 주로 존재하는 유역의 특성을 잘 반영한 것으로 판단된다.

Ecological impact of fast industrialization inferred from a sediment core in Seocheon, West Coast of Korean Peninsula

  • Choi, Rack Yeon;Kim, Heung-Tae;Yang, Ji-Woong;Kim, Jae Geun
    • Journal of Ecology and Environment
    • /
    • 제44권4호
    • /
    • pp.212-221
    • /
    • 2020
  • Background: Rapid industrialization has caused various impacts on nature, including heavy metal pollution. However, the impacts of industrialization vary depending on the types of industrializing activity and surrounding environment. South Korea is a proper region because the rapid socio-economical changes have been occurred since the late nineteenth century. Therefore, in this study, we estimate the anthropogenic impacts on an ecosystem from a sediment core of Yonghwasil-mot, an irrigation reservoir on the western coast of Korea, in terms of heavy metal concentrations, nutrient influx, and pollen composition. Results: The sediment accumulation rate (SAR) determined by 210Pb geochronology showed two abrupt peaks in the 1930s and 1950s, presumably because of smelting activity and the Korean War, respectively. The following gradual increase in SAR may reflect the urbanization of recent decades. The average concentrations of arsenic (As), copper (Cu), and lead (Pb) during the twentieth century were > 48% compared to those before the nineteenth century, supporting the influence of smelting activity. However, at the beginning of the twenty-first century, the As, Cu, and Pb concentrations decreased by 19% compared to levels in the twentieth century, which is coincident with the closure of the smelter in 1989 and government policy banning leaded gasoline since 1993. The pollen assemblage and nutrient input records exhibit changes in vegetation cover and water level of the reservoir corresponding to anthropogenic deforestation and reforestation, as well as to land-use alteration. Conclusions: Our results show that the rapid socio-economic development since the twentieth century clearly affected the vegetation cover, land use, and metal pollutions.

패류양식해역인 고성만 주변 표층 퇴적물의 유기물과 중금속 분포 및 오염현황 (Distribution and Pollution Status of Organic Matter and Heavy Metals in Surface Sediment Around Goseong Bay, a Shellfish Farming Area, Korea)

  • 이가람;황동운;황현진;박정현;김형철;권정노
    • 해양환경안전학회지
    • /
    • 제23권6호
    • /
    • pp.699-709
    • /
    • 2017
  • 우리나라 남해안의 대표적인 패류양식해역 중에 하나인 고성만 주변 표층 퇴적물 중 유기물과 중금속의 분포 및 오염현황을 이해하기 위해 입도와 총유기탄소(TOC), 총질소(TN), 중금속 9종(As, Cd, Cr, Cu, Fe, Hg, Mn, Pb, Zn)에 대해 조사하였다. 고성만 주변 퇴적물은 세립질의 점토(clay)와 니(mud)로 이루어져 있었다. 유기물과 중금속은 만의 입구쪽에서 안쪽으로 갈수록 상대적으로 높은 농도를 보였다. 특히, 퇴적물중 유기물 및 중금속의 분포와 C/N 비(5-10)를 고려하였을 때, 고성만 퇴적물 중 유기물은 해역 자체 내 생물체에 의해 생성된 해양기원성 유기물의 영향을 크게 받고, 중금속은 만 주변 혹은 만내 산재해 있는 인위적인 오염원의 영향을 크게 받고 있는 것으로 파악되었다. 4 가지 퇴적물 오염평가 방법을 이용하여 고성만의 중금속 오염현황을 살펴본 결과, 고성만 퇴적물은 전 해역에 걸쳐 중금속에 대하여 약간 오염된 상태였으며, 만의 북쪽과 북동쪽의 일부 해역은 퇴적물의 중금속 오염도가 높아 퇴적물에 서식하는 저서생물에 큰 위해를 줄 수 있는 상태인 것으로 나타났다. 따라서, 고성만 주변 퇴적환경 개선을 위한 체계적인 관리계획의 수립과 함께 지속적인 양식활동 및 양식생물의 안전성 확보를 위한 오염물질에 대한 집중적인 모니터링 연구가 병행되어져야 한다.

Bacterial community structure of paddy fields as influenced by heavy metal contamination

  • Tipayno, Sherlyn;Samaddar, Sandipan;Chatterjee, Poulami;Halim, MD Abdul;Sa, Tongmin
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.245-245
    • /
    • 2017
  • Heavy metal pollution of agricultural soils affects land productivity and has impact on the quality of surrounding ecosystem. Soil microbial community parameters are used as reliable indices for assessing quality of agricultural lands under metal stress. This study investigated bacterial community structure of polluted and undisturbed paddy soils to elucidate soil factors that are related to alteration of bacterial communities under conditions of metal pollution. No obvious differences in the richness or diversity of bacterial communities were observed between samples from polluted and control areas. The bacterial communities of three locations were distinct from one another, and each location possessed distinctive set of bacterial phylotypes. The abundances of several phyla and genera differed significantly between study locations. Variation of bacterial community was mostly related to soil general properties at phylum level while at finer taxonomic levels concentrations of arsenic and lead were significant factors. According to results of bacterial community functional prediction, the soil bacterial communities of metal polluted locations were characterized by more abundant DNA replication and repair, translation, transcription and nucleotide metabolism pathway enzymes while amino acid and lipid metabolism as well as xenobiotic biodegradation potential was reduced.Our results suggest that the soil microbial communities had adapted to the elevated metal concentrations in the polluted soils as evidenced by changes in relative abundances of particular groups of microorganisms at different taxonomic resolution levels, and by altered functional potential of the microbial communities.

  • PDF

도로변 토양의 오염 특성과 Pb, Zn, Cd 및 Mn의 침출거동에 미치는 pH와 반응시간의 영향 (Characteristics of roadside soils and effects of pH and Time on their reaching behaviors of Pb, Zn, Cd and Mn)

  • 이평구
    • 자원환경지질
    • /
    • 제32권1호
    • /
    • pp.53-62
    • /
    • 1999
  • The possibility of heavy metal pollution by contaminated roadside soils was studied under controlled conditions. The soil samples from roadside and those from a retention pond consisting of settling particles were characterized by the XRD analyses and the sequential extraction experiments. Characterization by sequential extraction, for roadside soil indicates elevate total concentrations of heavy metals. The leaching behavior of the samples under different pH and time conditions were also studied. Differences between both types of samples result mainly from the buffering effect of carbonates, present in roadside soils and lacking from settling particles. Acid leaching of the settling particles is equivalent to the sum of FI+FII+FIII, while the amounts leached from roadside soil are lower probably from kinetic reasons. The buffering effects of carbonates were found to greatly delay the onset of the leaching reactions and the extent of dissolution in most metals except for Ca and Mn. The study of leaching kinetics at pH of 6.5 and 5 showed that Cd and Zn reached the maximum possible concentration within 3 days, while Pb did not show any sign of dissolution at both ph values. The absolute amounts of dissolved Cd and Zn increased by 7 to 9 times by decreasing the pH from 6.5 to 5, indicating slightly acidified rain may result in significant metal dissolution. As deduced from both sequential extraction and leaching experiments, the relative mobility of heavy metals is found to be : Mn=Cd>Zn>>Pb>Fe, in spite of large differences in heavy metal contents and localizations.

  • PDF

Heavy metal profiles of agricultural soils in Sakarya, Turkey

  • Isleyen, Mehmet;Akpinar, Aysegul;Eren, Beytullah;Ok, Gulsun
    • Environmental Engineering Research
    • /
    • 제24권3호
    • /
    • pp.427-433
    • /
    • 2019
  • Sakarya is famous for cucurbit productions in Turkey and cucurbits can grow as big as 560 kg of weight per fruit in its agricultural areas. There is no or limited information about contaminant levels and profiles of the agricultural fields in Sakarya. The purpose of this study is to investigate the levels of polycyclic aromatic hydrocarbons (PAHs) (naphthalene, phenanthrene, pyrene, and fluoranthene) and heavy metal (As, Cd, Cu, Cr, Ni, Pb, Zn) concentrations of the selected fields. Total 33 soil samples were collected from 12 counties of Sakarya where both cucurbits have been produced and organochlorine pesticides have been applied to the fields for more than 30 y during the historical plantation periods. Heavy metal and PAH contents in the soil samples were measured by an Inductively Coupled Plasma Emission Spectroscopy and a Gas Chromatography-Mass Spectrometry. The highest phenanthrene, pyrene, and fluoranthene concentrations were measured as 63.50 ng/g, 134.34 ng/g, 140.0 ng/g, respectively in the soil samples from Geyve County. Cu, Ni, and Cr concentrations were measured as 108.2 mg/kg, 219.9 mg/kg, and 173.1 mg/kg, respectively in Geyve's samples which were also the highest and 2-7 times more than the limit values given in the Turkish Soil Pollution Control Regulation. Precautions need to be taken for Sakarya's agricultural fields which are an important milestone of Turkey's cucurbit and fruit productions since the contaminants can be accumulated in the fruits and edible parts of the plants.

지하철역사내 측정위치별 PM-10 및 중금속 농도특성에 관한 연구 (A study of PM-10 and Heavy Metal characteristics in the air at the each site of a subway station.)

  • 장정욱;조장제;최우건;박덕신;정우성;김태오
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2003년도 추계학술대회 논문집(III)
    • /
    • pp.389-394
    • /
    • 2003
  • Subway has been used one of major public transportations because of overpopulation and heavy traffic problems in the metropolitan areas. So, the air pollution has been serious. In this study, continuous date of PM-10 (particles with aerodynamic diameter < $10{\mu}m$) and heavy metal concentration measurements for winter, spring and summer. These measurements have been carried out in the outdoor, concourse, platform, tunnel. The study results showed that the average seasonally concentration of PM-10 particles were $141.57{\mu}g/m^3$ in winter. $129.34{\mu}g/m^3$ in spring and $122.73{\mu}g/m^3$. The average concentration of PM-l0 particles at indoor higher than outdoor. The concentration of Fe, Cu, showed the largest peak concentrations during the respective season.

  • PDF

Application of radiotracer technique in remediation of Zn(II) from aqueous solutions by dry cowdung powder

  • Shaikh, Sabrina Afzal;Bagla, Hemlata Kapil
    • Nuclear Engineering and Technology
    • /
    • 제54권2호
    • /
    • pp.456-461
    • /
    • 2022
  • Heavy metal pollution is caused due to anthropogenic activities and is considered as a serious environmental problem which endangers human health and environment. The present study deals with biosorption, an eco-friendly technique for the removal of heavy metal Zn(II) from aqueous medium. Various natural materials have been explored for the uptake of metal ions, where most of them are physically or chemically enhanced. Dry cowdung powder (DCP) has been utilized as a low-cost, environmentally friendly humiresin without any pre-treatment, thus demonstrating the concept of Green Chemistry. Batch biosorption studies using 65Zn(II) tracer were performed and the impact of different experimental parameters was studied. Results revealed that at pH 6, 94 ± 2% of Zn(II) was effectively biosorbed in 5 min, at 303 K. The process was spontaneous and exothermic, following pseudo-second-order reaction. The mechanism of heavy metal biosorption employing green adsorbent was therefore elucidated in order to determine the optimal method for removing Zn(II) ions. DCP has a lot of potential in the wastewater treatment industry, as seen by its ability to meet 3A's affordability, adaptability, and acceptability criteria. As a result, DCP emerges as one of the most promising challengers for green chemistry and the zero-waste idea.

Preparation and characterization of green adsorbent from waste glass and its application for the removal of heavy metals from well water

  • Rashed, M. Nageeb;Gad, A.A.;AbdEldaiem, A.M.
    • Advances in environmental research
    • /
    • 제7권1호
    • /
    • pp.53-71
    • /
    • 2018
  • Waste glass disposal causes environmental problems in the cities. To find a suitable green environmental solution for this problem low cost adsorbent in this study was prepared from waste glass. An effective new green adsorbent was synthesized by hydrothermal treatment of waste glass (WG), followed by acidic activation of its surface by HCl (WGP). The prepared adsorbent was characterized by scanning electron microscopy (SEM), X-ray fluorescence (XRF), X-ray diffraction (XRD), and BET surface measurement. The developed adsorbent was used for the removal of heavy metals (Cd, Cu, Fe, Pb and Zn) from well water. Batch experiments were conducted to test the ability of the prepared adsorbent for the removal of Cd, Cu, Fe, Pb and Zn from well water. The experiments of the heavy metals adsorption by adsorbent (WGP) were performed at different metal ion concentrations, solution pH, adsorbent dosage and contact time. The Langmuir and Freundlich adsorption isotherms and kinetic models were used to verify the adsorption performance. The results indicated high removal efficiencies (99-100%) for all the studied heavy metals at pH 7 at constant contact time of 2 h. The data obtained from adsorption isotherms of metal ions at different time fitted well to linear form of the Langmuir sorption equation, and pseudo-second-order kinetic model. Application of the resulted conditions on well water demonstrated that the modified waste glass adsorbent successfully adsorbed heavy metals (Cd, Cu, Fe, Pb and Zn) from well water.