• Title/Summary/Keyword: Heavy Metal Elimination

Search Result 24, Processing Time 0.034 seconds

Studies on the Heavy Metals Elimination and Antioxidation of the Onion Ethnolic Extract (양파 알코올 추출물의 항산화 효과 및 중금속 제거 가능성 연구)

  • Lee, Mi-Kyung;Chung, Young-Hee;Nam, Hyun-Keun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.143-146
    • /
    • 1999
  • In order to study for Onion ethanolic extract on the Heavy Metal Elimination and antioxidation, the peroxide values of oil and eliminated metal were analyzed. The results are follows: It was very effective as a retardant for autoxidation processing of the soybean and olive oil by the Onion ethanolic extract. Quercetin in the Onion ethanolic extract was affected as a ligand for chelating with some metals. Through out this study, Quercetin in the Onion ethanolic extract was affected as eliminator of the Mercury, Lead, and Cadmium.Abstracts In order to study for Onion ethanolic extract on the Heavy Metal Elimination and antioxidation, the peroxide values of oil and eliminated metal were analyzed. The results are follows: It was very effective as a retardant for autoxidation processing of the soybean and olive oil by the Onion ethanolic extract. Quercetin in the Onion ethanolic extract was affected as a ligand for chelating with some metals. Through out this study, quercetin in the Onion ethanolic extract was affected as eliminator of the mercury, lead, and cadmium.

Removal of Heavy Metal Ions Using Wood Charcoal and Bark Charcoal (목탄 및 수피탄의 중금속 이온 제거)

  • Jo, Tae-Su;Lee, Oh-Kyu;Choi, Joon-Weon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.29-37
    • /
    • 2007
  • To evaluate the effect of carbonization temperature of charcoal on the heavy metal adsorption property, Quercus mongolica wood and Larix kaempferi bark powder (100~60 mesh) were carbonized at between 400 and $900^{\circ}C$ at intervals of $100^{\circ}C$. In the properties of carbonized materials which affect the adsorption ability, pH increased with increasing the carbonization temperature, so that the pHs of wood and bark charcoal carbonized at $900^{\circ}C$ were 10.8 and 10.4, respectively. Also, in both materials, the carbon content ratio became larger as the carbonization temperature was raised. At the same carbonization temperature, carbon content ratio of the bark charcoal tended to be greater than that of the wood charcoal. In case of iodine adsorption which indicates the adsorption property in liquid phase, the wood charcoal showed higher adsorption value than the bark charcoal. From the investigation of adsorptive elimination properties of the charcoals against 15 ppm Cd, Zn, and Cu, the higher the carbonization temperature, the greater elimination ratio was. In comparison, the wood charcoal presented higher elimination ratio than that of the bark charcoal. In the wood charcoals carbonized at higher than $500^{\circ}C$, especially, 0.2 g of the charcoal was enough to eliminated almost 100% of the heavy metal ions. Heavy metal ion elimination ratio of the charcoals depended on the kinds of adsorbates. The effectiveness of adsorbates in adsorptive elimination by the charcoals were in order of Cu > Cd > Zn. This is because the physicochemical interaction between the adsorbate and adsorbent affects their adsorption properties, it is considered that subsequent researches are needed to improve the effectiveness of heavy metal adsorption by the charcoals.

Elimination of Harmful Heavy Metals from Sea Lettuce Enteromorpha sp. with Acid Treatment (산 처리에 의한 파래(Enteromorpha sp.)의 유해 중금속 제거)

  • Mok, Jong Soo;Son, Kwang Tae;Lee, Tae Seek;Kwon, Ji Young;Park, Kunbawui;Kim, Ji Hoe
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.50 no.1
    • /
    • pp.1-7
    • /
    • 2017
  • The elimination of harmful heavy metals (Cd, Cr, and Pb) from sea lettuce Enteromorpha sp. was evaluated in filtered seawater over a pH range of 2.0-4.0 using citric, hydrochloric, and nitric acids. We also evaluated the quality of sea lettuce samples after release of their internal constituents into seawater solutions containing acids. The heavy metals that accumulated in raw sea lettuce after incubation for 3 days in seawater containing Cd, Cr, and Pb were, in descending order, Pb ($120.45{\mu}g/g$), Cr ($86.04{\mu}g/g$), and Cd ($18.35{\mu}g/g$). The rate of elimination of heavy metals from sea lettuce was higher at lower pH for all of the acids used. However, the color of the sea lettuce changed adversely at below pH 2.5. The heavy metals in sea lettuce samples after 10 min in seawater at pH 3.0 containing the three acids were eliminated in the order Pb (42.2-78.0%), Cd (51.8-55.3%), and Cr (14.0-32.8%). The quality of the sea lettuce was not affected when it was incubated for 30 min at pH above 3.0. The maximum elimination of heavy metals from sea lettuce occurred when it was soaked for 10 min in seawater at pH 3.0 containing citric acid.

Removal of Heavy Metals by Cladophora sp. in Batch Culture: The Effect of Wet-mixed Solidified Soil (loess) on Bioremoval Capacities

  • Kim, Jin-Hee;Lee, Kyung-Lak;Kim, Sook-Chan;Kim, Han-Soon
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.4
    • /
    • pp.537-545
    • /
    • 2007
  • The heavy metal removal capacity of filamentous green alga Cladophora sp. cultured together with wet-mixed solidified soil (loess) was tested. A Cladophora sp. was cultured for 5d, with added Chu No. 10 medium, in stream water contaminated by high concentration of heavy metals from a closed mine effluent. Heavy metal ion concentrations of the medium and in algal tissue were measured every day during the experiment. Dissolved metals (Al, Cd, Cu, Fe, Mn, Zn) in medium were rapidly removed (over 90% elimination) within 1-2d when alga and loess were added. Dissolved heavy metals dropped by only 10% when algae were cultured without loess. The Cladophora sp. accumulated much more heavy metals when cultured with loess than when the alga was cultured alone. Cladophora sp. exhibited a maximum uptake capacity for Al ($17,000{\mu}g^{-1}$ algal dry weight). The metal bioremoval capacities of the algae were in the order Al, Fe, Cu, Mn, Zn and Cd. The heavy metal removal capacity of Cladophora sp. showed significant increases when wet-mixed solidified soil was added to culture media.

Heavy Metal Interactions during Accumulation and Elimination of Cadmium and Copper in the Liver of Juvenile Flounder, Paralichthys olivaceus

  • Kim Seong-Gil;Kim Sang-Gyu;Kang Ju-Chan
    • Fisheries and Aquatic Sciences
    • /
    • v.5 no.4
    • /
    • pp.295-301
    • /
    • 2002
  • Experiments were carried out to investigate the effects of metal interaction on the accumulation and elimination of Cd and Cu in the liver of flounder, Paralichthys olivaceus, exposed to sub-chronic Cd (0, 5, 10, 50, 100 ${\mu}g/L$)/Cu $(10 {\mu}g/L)$ mixture. Cd exposure resulted in an increased Cd accumulation in the liver of flounder for exposure periods and concentration, and Cd accumulation increased linearly with exposure time. Cu accumulation profiles were similar to those of Cd. Cd concentration in the liver significantly decreased at the 10th depuration period and elimination rate was $66.20\%,\;86.22\%$ in 50 and $100 {\mu}g/L$at the end of depuration periods, respectively. Although, Cu elimination was similar to Cd elimination phase, Cd elimination rate was higher than that of Cu. Co-relationship of Cd and Cu have a positive correlation coefficient r=0.8620 (P<0.001) and support the strong relationship between Cd and Cu accumulation. As increase with the Cd exposure concentration, there were significant (P<0.001) differences between Cd and Cu accumulation.

Extraction of Minerals and Elimination Effect of Heavy Metals in Water by Nohwado Quartz Porphyry (노화도산 맥반석의 미네랄 용출 및 중금속 제거 효과(I))

  • Hwang, Jinbong;Yang, Miok;Koo, Minseon
    • Analytical Science and Technology
    • /
    • v.9 no.2
    • /
    • pp.210-219
    • /
    • 1996
  • Extraction of minerals in deionized water and elimination effect of heavy metals in water by Nohwado Quartz Porphyry were examined. When the Nohwado Quartz Porphyry was immersed and stirred in deionized water at 0.5, 1.0, 1.5 and 2.0% concentration for 3 hours, various minerals concentration of the all stirred water were suitable for potable water. Particularly, when the lead, copper, cadmium and arsenic solution were shaked with Quartz Porphyry at $20^{\circ}C$ for 24 hours, the elimination rate of each mineral was 99.5, 99.9, 95.0 and 66.5%, respectively.

  • PDF

Recent Progress on Adsorptive Removal of Cd(II), Hg(II), and Pb(II) Ions by Post-synthetically Modified Metal-organic Frameworks and Chemically Modified Activated Carbons

  • Rallapalli, Phani Brahma Somayajulu;Choi, Suk Soon;Ha, Jeong Hyub
    • Applied Chemistry for Engineering
    • /
    • v.33 no.2
    • /
    • pp.133-144
    • /
    • 2022
  • Fast-paced industrial and agricultural development generates large quantities of hazardous heavy metals (HMs), which are extremely damaging to individuals and the environment. Research in both academia and industry has been spurred by the need for HMs to be removed from water bodies. Advanced materials are being developed to replace existing water purification technologies or to introduce cutting-edge solutions that solve challenges such as cost efficacy, easy production, diverse metal removal, and regenerability. Water treatment industries are increasingly interested in activated carbon because of its high adsorption capacity for HMs adsorption. Furthermore, because of its huge surface area, abundant functional groups on surface, and optimal pore diameter, the modified activated carbon has the potential to be used as an efficient adsorbent. Metal-organic frameworks (MOFs), a novel organic-inorganic hybrid porous materials, sparked an interest in the elimination of HMs via adsorption. This is due to the their highly porous nature, large surface area, abundance of exposed adsorptive sites, and post-synthetic modification (PSM) ability. This review introduces PSM methods for MOFs, chemical modification of activated carbons (ACs), and current advancements in the elimination of Pb2+, Hg2+, and Cd2+ ions from water using modified MOFs and ACs via adsorption.

A Study on Adsorption Characteristics of the Heavy Metals using Melting Slag of Incinerator Ash (소각재 용융슬래그를 이용한 중금속 흡착특성에 관한 연구)

  • Yoo, Seung-Chol;Kim, Hwan-Gi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.4
    • /
    • pp.413-420
    • /
    • 2008
  • In order to utilize cinder melting slag as a filter media to control the quality of early rainwater, its environmental stability was verified by heavy metal elution experiment and improved by pre-treatment. Possibilities of improving its function as an absorbent was considered. Absorption characteristics of melting slag before and after the pre-treatment were analyzed by heavy metal equilibrium and stationary-phase column experiments, which in turn were analyzed by comparison experiment with activated carbon. As a result of heavy metal elution experiment, every metal item existed in a much lower amount than the criteria or was not detected, implying that there is no problem recycling it. Absorption equilibrium experiment showed that the time for pre-treatment melting slag to reach the equilibrium was reduced, while the absorbed amount was greatly increased. Stationary-phase column experiment assures us that the elimination rate was not changed much by influx rate, pH and the change in packing volume rate, indicating that this melting slag can be used not only as a filter media to control the quality of early rainwater but also in many areas of water-processing.

Development of a Microbe-Zeolite Carrier for the Effective Elimination of Heavy Metals from Seawater

  • Kim, In Hwa;Choi, Jin-Ha;Joo, Jeong Ock;Kim, Young-Kee;Choi, Jeong-Woo;Oh, Byung-Keun
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.9
    • /
    • pp.1542-1546
    • /
    • 2015
  • The purpose of this study was to investigate the potential of zeolite-supported sulfatereducing bacteria (SRB) in enhancing the removal of Cu2+, Ni2+, and Cr6+ in contaminated seawater. Our results show that SRB-immobilized zeolite carriers can enhance the removal of heavy metals. In addition, heavy metals were generally better removed at conditions of 37°C. Cu2+, Ni2+, and Cr6+ were effectively removed by 98.2%, 90.1%, and 99.8% at 100 parts per million concentration of the heavy metals, respectively. These results indicate that SRB-zeolite carriers hold great potential for use in the removal of cationic heavy metal species from marine environment.