• Title/Summary/Keyword: Heavy Metal Compounds

Search Result 133, Processing Time 0.036 seconds

Analysis of trans-Resveratrol Contents of Grape and Grape Products Consumed in Korea (포도와 포도 가공품에 함유되어 있는 trans-resveratrol의 함량 분석)

  • Kim, Dae-Jung;Kim, Sang-Kyun;Kim, Myung-Hee;Lee, Hee-Bong;Lee, Jun-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.5
    • /
    • pp.764-768
    • /
    • 2003
  • Resveratrol is natually occurring phytoalexin compounds produced by grape berries, peanuts, and their products in response to stress such as fungal infection, heavy metal ions or UV irradiation. The objective of this study was to develop a reliable high-performance liquid chromatographic method for the quantitative determination of trans-resveratrol in grape and its products. The trans-resveratrol was separated isocratically on Nucleosil 100-5 C18 column, using a mobile phase containing acetonitrile : water (40 : 60, v/v), detected by UV detector at 306 nm and the flow rate was 0.3 mL/min. Under this analytical condition, the recoveries of trans-resveratrol in grape, wine, and grape juice were 92.35, 104.72, and 91.08, respectively. Limit of detection in grape, wine, and grape juice were 14.5 ng/g, 3.62 ng/mL, and 4.02 ng/mL. Also, limit of quantitation in grape, wine, and grape juice were 14.8 ng/g, 3.69 ng/mL, and 4.10 ng/mL. Assay values of 32 grape varieties, 9 wines, and 9 grape juices were ranged from trace amount to $207.1\;{\mu}g/100\;g$, from 5.4 to $275.7\;{\mu}g/L$, and from 63.3 to $751.6\;{\mu}g/L$, respectively.

Effect of Geranti Bio-Ge Yeast, a Dried Yeast Containing Biogermanium, on the Production of Antibodies by B Cells (B 세포의 항체 생산에 대한 게란티 바이오-게르마늄 효모의 영향)

  • Joo, Seong-Soo;Won, Tae-Joon;Lee, Yong-Jin;Kim, Min-Jung;Park, So-Young;Lee, Sung-Hee;Lee, Do-Ik;Hwang, Kwang-Woo
    • IMMUNE NETWORK
    • /
    • v.6 no.2
    • /
    • pp.86-92
    • /
    • 2006
  • Background: Germanium compounds are increased to use in nutrient foods and medicines in terms of antibiotics to microbes, anticancer, modulation of immune system and neutralizing heavy metal toxins. Geranti Bio-Ge Yeast, containing stable organic germanium and bound to the yeast protein was developed by Geranti Pharm. LTD. and the modulation effect in the immune system was examined in vivo and in vitro. Methods: The compound, Geranti Bio-Ge Yeast, was fed to female Balb/c mice (each group has 10 mice) for 4 weeks and the yeast powder and steamed red ginseng powder were used as control during the same feeding time points. During 4 weeks there was no symptom to be considered, and after 4 weeks feeding all mice were sacrificed to check the changes of related immune cells and subsidiary responses (i.e. cell counting, FACS, MTT, LDH, PFC assay). Results: In pre-post comparison, B cell population was increased in the group of Geranti Bio-Ge Yeast in a dose dependent manner (100 to 800 mg/kg). However, the population of T cell, dendritic cell and macrophage was not comparably changed in all doses. The ability of cytokine production and proliferation was almost same level as shown in control group. In contrast, PFC assay informed that the compound increase the antibody production ability when fed over 200 mg/kg implying that the increase of PFC number might be due to the increase of B cells. Conclusion: Over the entire study, we concluded that the compound, Geranti Bio-Ge Yeast has better potential in immune response in terms of B cell proliferation than that of positive control, red ginseng, and the compound can be one of the future candidates for a new supplementary source improving immune system activity.

Removal of Chlorinated Organic Compounds in Flue Gas by Activated Carbon Injection in a Semi-Drying Reactor (반건식 반응기에서의 활성탄 혼합주입에 의한 소각로 배가스중의 유기 염소계 화합물의 제거 공정 연구)

  • Choo, Changupp;Whang, Jaedong;Lee, Joyoung;Cho, Chulhoon;Shin, Byungchul
    • Clean Technology
    • /
    • v.6 no.2
    • /
    • pp.121-127
    • /
    • 2000
  • There are several kinds of hazardous materials in incinerator flue gas, such as particulate matter, acid gas, heavy metal, dioxin, etc. The activated carbon adsorption is considered as one of the methods removing dioxin from flue gas. Without any additional equipment and facilities, the activated carbon was mixed with lime and sprayed in the semi-drying reactor of an incinerator and filtered in the bag filter, and its efficiency of removing hazardous organic material was investigated. 1,2-dichlorobenzene (o-DCB) was used as a precursor material of dioxin and the effects of the activated carbon amount, the operating temperature of the reactor, and the atomizer r.p.m were measured and analyzed. Experimental results showed that the optimum outlet temperature of the reactor was $145^{\circ}C$ considering the performance of the bag filter, and the adsorption performance improved with the increase of the atomizer r.p.m. Also the performance of removing o-DCB in the bag filter is higher than of the semi-drying reactor.

  • PDF

D-$\Pi$-A designed dye chromophores and nanoparticles: optical properties, chemosensor effects and PE/Aramid fiber colorations

  • Son, Young-A;Kim, Su-Ho;Kim, Young-Sung
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2010.03a
    • /
    • pp.40-40
    • /
    • 2010
  • Studies on attractive color changing property of dye chromophore and fluorophore have been greatly enjoyed in the related industrial and research fields such as optoelectronics, chemosensor, biosensor and so on. The optical property based on D-$\Pi$-A intramolecular charge transfer (ICT) system of chromophore molecules can be utilized as suitable sensing probes for checking media polarity and determining colorimetric chemosensing effect, especially heavy metal detection. These finding are obtained by absorption and emission properties. In this work, donor-acceptor D-$\Pi$-A type fluorescent dyes were designed and synthesized with the corresponding donor and acceptor groups. The selected donor moieties might be provided prominent amorphous properties which are very useful in designing and synthesizing functional polymers and in fabricating devices. Another reasons to choose are commercial availabilities in high purity and low price. Donor-bridge-acceptor (D-A) type dyes can produce impressive optical-physical properties, yielding them potentially suitable for applications in the synthesis of small functional organic molecules. Small organic functional molecules have unique advantages, such as better solubility, amorphous character, and represent an area of research which needs to be explored and developed. Currently, their applications in metalorganic compounds is rapidly expanding and becoming widespread in self-assembly processes, photoluminescence applications, chiral organocatalysts, and ingrafts with nanomaterials. Colloidal nanoparticles have received great attentions in recent years. The photophysical properties of nanoparticles, particularly in terms of brightness, photostability, emission color purity and broad adsorption range, are very attractive functions in many applications. To our knowledge background, colloidal nanoparticles have been enjoyed their applications in bio-probe research fields. This research interest can be raised by the advantages of the materials such as high photoluminescence quantum yields, sharp emission band, long-term photostability and broad excitation spectra. In recent, the uses of nanoparticles being embedded in a polymer matrix and binded on polymer surface have been explored and their properties such as photo-activation and strong photoluminescence have been proposed. The prepared chromophores and nanoparticles were investigated with absorption and emission properties, solvatochromic behaviors, pH induced color switching effects, chemosensing effects and HOMO/LUMO energy potentials with computer simulation. In addition, synthesized fluorophore dyes and particles were applied onto PE/Aramid fiber fluorescing colorations. And the related details were then discussed.

  • PDF

Complete genome sequence of Marinobacter salarius HL2708#2 isolated from a lava sea water environment on Jeju Island (제주용암 해수 환경에서 분리한 Marinobacter salarius HL2708#2의 유전체 해독)

  • Oh, Hyun-Myung;Kim, Dae-Hyun;Han, Seong-Jeong;Song, Jong-Ho;Kim, Kukhyun;Jang, Dongil
    • Korean Journal of Microbiology
    • /
    • v.55 no.1
    • /
    • pp.69-73
    • /
    • 2019
  • During screening of microbes for compounds having cosmetic benefits, we isolated Marinobacter salarius HL2708#2 from lava seawater on Jeju Island, Republic of Korea. The complete genome sequence was determined. Strain HL27080#2 features a circular chromosome of 4,304,603 bp with 57.21% G+C content and a 244,163 bp plasmid with 53.14% G+C. There were 4,180 protein coding sequences identified, along with 49 transfer RNA and 18 ribosomal RNA noncoding genes. The genome harbored genes for the utilization of alcohol, maltose/starch, and monosaccharide as sole carbon sources. Genes responsible for halophilic characteristics and heavy metal resistance could be annotated, as well as aromatic and alkane hydrocarbons. Contrary to the prior report that M. salarius is negative for nitrate and nitrite reduction, nitrate/nitrite reductase along with nitrate/nitrate transporters and nitronate monooxygenase were evident, suggesting that strain HL2708#2 may be able to denitrify extracellular nitroalkenes to ammonia.

Antioxidative Effects of Parnassia palustris L. Extract on Ferrous Sulfate-Induced Cellular Injury of Cultured C6 Glioma Cells (파킨슨씨병 유발물질인 황산철로 손상된 배양 신경아교세포에 대한 물매화 추출물의 항산화 효과)

  • Young-Mi, Seo;Seung-Bum, Yang
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.54 no.4
    • /
    • pp.298-306
    • /
    • 2022
  • This study sought to evaluate the mechanism of cellular injury caused by ferrous sulfate (FeSO4) and the protective effects of Parnassia palustris L. (PP) extract against FeSO4-induced cytotoxicity of cultured C6 glioma cells. FeSO4 is known to cause neurotoxicity and induce Parkinson's disease. The antioxidative effects of PP, such as superoxide dismutase (SOD)-like and superoxide anion-radical (SAR)-scavenging activities, as well as effects on cell viability, were studied. FeSO4 significantly decreased cell viability in a dose-dependent manner and the XTT50 value, the concentration of FeSO4 which reduced the cell viability by half, was measured at 63.3 μM in these cultures. FeSO4 was estimated to be highly cytotoxic by the Borenfreund and Puerner toxicity criteria. Quercetin, an antioxidant, significantly improved cell viability, damaged by FeSO4-induced cytotoxicity. While evaluating the protective effects of the PP extract on FeSO4-induced cytotoxicity, it was observed that the extract significantly increased cell viability compared to the FeSO4-treated group. Also, the PP extract showed superoxide dismutase (SOD)-like and superoxide anion radical (SAR)-scavenging activities. Based on these findings, it can be concluded that FeSO4 induced oxidative stress-related cytotoxicity, and the PP extract effectively protected against this cytotoxicity via its antioxidative effects. In conclusion, natural antioxidant sources such as PP may be agents useful for preventing oxidative stress-related cytotoxicity induced by heavy metal compounds such as the FeSO4, a known Parkinsonism inducer.

Corrosion Characteristics by CCPP Control in Simulated Distribution System (CCPP 조절에 따른 모의 상수관로의 부식특성에 관한 연구)

  • Kim, Do-Hwan;Lee, Jae-In;Lee, Ji-Hyung;Han, Dong-Yueb;Kim, Dong-Youn;Hong, Soon-Heon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.12
    • /
    • pp.1249-1256
    • /
    • 2005
  • This study was performed to investigate the efficiency of the corrosion prevention in the simulated distribution system using CCPP(Calcium Carbonate Precipitation Potential) as the anti-corrosive index by adjusting pH, total dissolved solids, alkalinity and calcium hardness in the water treatment pilot process. The materials of the simulated distribution system(SDS) were equiped with same materials of real field water distribution system. CCPP concentrations controlled by $Ca(OH)_2$, $CO_2$ gas and $Na_2CO_3$ in the simulated distribution system and uncontrolled by the chemicals in the general water distribution system were average 0.61 mg/L and -7.77 mg/L. The concentrations of heavy metals like Fe, Zn, Cu ions in effluent water of the simulated distribution system controlled with water quality were decreased rather than the general water distribution system uncontrolled with water quality. In simulated distribution system(SDS), corrosion prevention film formed by CCPP control was observed that scale was come into forming six months later and it was formed into density as time goes on. We were analyzed XRD(X-ray diffraction) for investigating component of crystal compounds and structure for galvanized steel pipe(15 mm). Finding on analysis, scale was compounded to $Zn_4CO_3(OH)_6{\cdot}H_2O$ (Zinc Carbonate Hydroxide Hydrate) after ten months late, and it was compounded on $CaCO_3$(Calcium Carbonate) and $ZnCO_3$(Smithsonite) after nineteen months later.

A Study on the Water Quality of Reservoir Tank in the Building Complex on Jeonnam Area (대형건축물 저수조의 수질실태 및 개선방안에 관한 연구)

  • Lee, J.H.;Lee, H.H.;Kim, H.B.;Ahn, G.W.;Park, K.N.;Kim, Y.K.;Bae, J.S.;Mun, H.;Park, C.U.;Oh, E.H.;Park, S.I.;Seo, Y.G.
    • Journal of environmental and Sanitary engineering
    • /
    • v.15 no.4
    • /
    • pp.59-77
    • /
    • 2000
  • This study was carried out to investigate on several factors, which contaminative the water quality through the water pipe during feeding water, in 42 largescaled apart-ments(total 84 cases) and assayed the Volatile Organic Compounds(VOCs) and concen-tration of heavy metals that inflow and outflow in reservior water in Jeonnam area(Mokpo, Suncheon, Yeosu) from January 1999 to December 1999. The results obtained were summarized as follows ; 1. The quality of the water pipe composition in the order of frequency in the quality of water pipes were Copper(45.2%)> Zinc(38.9%)> Stainless steel(9.5%)> PVC(4.8%)> PM(2.4%) in observing 42 sites. All of the drain pipes were used the cast iron quality. 2. The result of certification curve from 12 items(17kind) of VOCs was $1.0-4.0{\mu{g}}/{\ell}$ range, a coefficient of correlation was shown 0.99 over. A MDL of each substance range was within $0.1-1.0{\mu{g}}/{\ell}$. 3. The result of the assay, 5 kinds(Viny chloride, Dichloromethane, Ethylbenzene, M,P-xylene, Styrene) of the VOCs of 14 kinds was not detected and the other items were detected slightly. The detection rate of one item and over in total VOCs samples, were 25.9% in inflow and 27.9% in outflow. And frequency of detect in inflow/outflow of THM(Chloroform, Bromodichloro-methane, Dibromochloromethane, Bromoform) were shown higher than 94.1%, 97.0% each stages. It comes to the conclusion that all of the samples were reason able for drinking water standards. 4. The coefficient of correlation were reasonable, it shown 0.999 over in $0.1-1.0{\mu{g}}/{\ell}$ of a measuring range conditions of 4kinds in organic substance(Zn, Cu, Fe, Mn). 5. The results were showed suitability in 78 cases(92.9%) and unsuitability in 6 cases (7.1%), in 84 cases of in organic substances. Compare to inflow stage, mean concentrations of heavy metal, were increased slightly in Zn, Cu, Fe except Mn than outflow stage. The result of the mean concentration in organic substance inflow and outflow in the apartment water tank using Pair-compared T-test, in 95% reliance index, were $0.179mg/{\ell}(0.151-0.307mg/{\ell})$ in Zinc, $0.136mg/{\ell}(0.113-0.230mg/{\ell})$ in Copper, $0.052mg/{\ell}(0.048-0.098mg/{\ell})$ in Fe, and there was a bit growing tendency but there was no differece in Mn. 6. The mean concentration of Copper which used Cu pipe as a water supply pipe in apartment were $0.216mg/{\ell}(0.161-0.338mg/{\ell})$ in case of the Zine pipe were $0.286mg/{\ell}(0.204-0.435mg/{\ell})$. It shows that the detection rate was more higher than the other material used in Cu or Zn as the water supply pipe. We supposed to Cu and Zn substance were gushing out water supply pipe.

  • PDF

Environmental Pollutants in Streams of Andong District and Insect Immune Biomarker (안동지역 하천의 환경오염물질과 곤충면역 생체지표 분석)

  • Ryoo Keon Sang;Ko Seong-Oon;Cho Sunghwan;Lee Hwasung;Kim Yonggyun
    • Korean journal of applied entomology
    • /
    • v.44 no.2
    • /
    • pp.97-108
    • /
    • 2005
  • Samples of water, soil, and sediment were taken from 10 streams near Andong, Korea in May 2004. To assess the degree of environmental pollution of each stream, chemical pollutants such as total notrogen (T-N), total phosphorus (T-P), chemical oxygen demand (COD), heavy metals, organophosphorus pesticides, organochlorine pesticides, and dioxin-like PCB congeners were analyzed by standard process tests or U.S. EPA methods. In addition, biomarkers originated from insect immune systems of beet armyworm, Spodoptera exigua, were used to analysis of the environmental samples. Except Waya-chun stream showing T-N content of 9.12 mg/L, most streams were contaminated with relatively low levels of overall pollutants in terms of T-N, T-P, and COD, compared to their acceptable environmental levels designated by the Ministry of Environment. Contents of Pb and Cd in samples of each stream were much lower than environmentally permissible levels. However, several times higherconcentrations of Pb and Cd were found in locations at Mi-chun, Kilan-chun, and Hyunha-chun streams, in comparison with other streams. Diazinon, parathion, and phenthoate compounds among organophosphorus pesticides were detected as concentrations of 0.19, 0.40, and $1.13\;{\mu}g/g$, respectively, from soil sample collected in the vicinity of Mi-chun stream. On the other hand, 16 organochlorine pesticides and 12 dioxin-like PCB congeners, known as endocrine disrupting chemicals, selected in this study were not found above the limit of detection. Biomarker analyses using insect immune responses indicated that Waya-chun stream was suspected as exposure to environmental pollutants. Limitation and compensation of both environmental analysis techniques are discussed.

Potential Contamination Sources on Fresh Produce Associated with Food Safety

  • Choi, Jungmin;Lee, Sang In;Rackerby, Bryna;Moppert, Ian;McGorrin, Robert;Ha, Sang-Do;Park, Si Hong
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.1
    • /
    • pp.1-12
    • /
    • 2019
  • The health benefits associated with consumption of fresh produce have been clearly demonstrated and encouraged by international nutrition and health authorities. However, since fresh produce is usually minimally processed, increased consumption of fresh fruits and vegetables has also led to a simultaneous escalation of foodborne illness cases. According to the report by the World Health Organization (WHO), 1 in 10 people suffer from foodborne diseases and 420,000 die every year globally. In comparison to other processed foods, fresh produce can be easily contaminated by various routes at different points in the supply chain from farm to fork. This review is focused on the identification and characterization of possible sources of foodborne illnesses from chemical, biological, and physical hazards and the applicable methodologies to detect potential contaminants. Agro-chemicals (pesticides, fungicides and herbicides), natural toxins (mycotoxins and plant toxins), and heavy metals (mercury and cadmium) are the main sources of chemical hazards, which can be detected by several methods including chromatography and nano-techniques based on nanostructured materials such as noble metal nanoparticles (NMPs), quantum dots (QDs) and magnetic nanoparticles or nanotube. However, the diversity of chemical structures complicates the establishment of one standard method to differentiate the variety of chemical compounds. In addition, fresh fruits and vegetables contain high nutrient contents and moisture, which promote the growth of unwanted microorganisms including bacterial pathogens (Salmonella, E. coli O157: H7, Shigella, Listeria monocytogenes, and Bacillus cereus) and non-bacterial pathogens (norovirus and parasites). In order to detect specific pathogens in fresh produce, methods based on molecular biology such as PCR and immunology are commonly used. Finally, physical hazards including contamination by glass, metal, and gravel in food can cause serious injuries to customers. In order to decrease physical hazards, vision systems such as X-ray inspection have been adopted to detect physical contaminants in food, while exceptional handling skills by food production employees are required to prevent additional contamination.