• Title/Summary/Keyword: Heavy Cargo

Search Result 119, Processing Time 0.028 seconds

A Study on the Arbitration and Maritime Dispute Resolution in Korea and Japan (한·일 해사분쟁해결과 중재제도에 관한 고찰)

  • Yu, Byoung yook
    • THE INTERNATIONAL COMMERCE & LAW REVIEW
    • /
    • v.64
    • /
    • pp.65-97
    • /
    • 2014
  • Arbitration is the dispute methods for speedy and economic resolutions in international commercial areas. In maritime disputes cases in East Asia, Korea and Japan are the regional benefits to cover and deal with the maritime cases on arbitration. And Korea and Japan are the competitive maritime industry for heavy shipbuilding industry, cargo carrier, processing and transhipment service on ports, and ship financial services in national competitive areas. Japan is the Tokyo maritime arbitration commission(TOMAC) as an uniquely capable of dealing with arbitrations involving problems arising in the sea field. TOMAC provides amended its arbitration rules 2014 aiming at matching with the maritime disputes circumstances with three maritime arbitration rules as ordinary rules, simplified rules and the rules of small claims arbitration procedure. KCAB however, as the unique commercial arbitration board in Korea is dealing on all of the commercial disputes on only the international commercial arbitration rules in 2011. Though KCAB is dealt with maritime dispute cases on international arbitration rules in Korea, it is small and simple compared with TOMAC in Japan. Maritime disputes are highly complicated and embroiled with multi-parties contract and subcontracts arising under contracts relating to bills of lading, charter parties, sale and purchase of ships, shipbuilding, ship financing and so forth. This paper is to provides a discussion and comparison on recently arbitration rules focus on the maritime aspects on Korea and Japan. We need to consider to make an independent and special institute and maritime arbitration rules including the multiparty consolidation and med-arb provisions for handling the disputes and resolution of maritime conflict cases in Korea.

  • PDF

CFD Simulation of Methane Combustion for Estimation of Fire and Explosion in Offshore Plant (해양플랜트의 화재 및 폭발 예측을 위한 메탄 연소의 CFD 시뮬레이션)

  • Seok, Jun;Jeong, Se-Min;Park, Jong-Chun;Paik, Jeom-Kee
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.59-68
    • /
    • 2013
  • Because of the recent increase in maritime cargo capacity, the production and price of crude oil have been rising. As oil prices have risen, many problems have occurred in the industry. To solve these problems, marine resources are being actively developed, and there has been an increase in the orders for special vessels and marine structures for the development of marine resources. However, consequently, various kinds of accidents have also occurred in these special vessels and structures. One of the major types of accidents involves fire and explosion, which cause many casualties and property damage. Therefore, various studies to estimate and prevent such accidents have been carried out. In this study, as basic research for the prevention of fire and explosion, numerical simulations on combustion were carried out by using a commercial grid generation program, Gridgen, and a CFD program, ANSYS-CFX. The influences of some parameters, such as the grid system, turbulence model, turbulent dissipation rate, and so on, on the simulation results were investigated, and optimum ones were chosen. It was found that the present results adopting these parameters agreed moderately well with other experimental and numerical ones.

A Methodology to Provide the Criterion for the Seakeeping Performance of a Fore-Bridge-Ship in Rough Seas - The Problem on the Application of the Past Deckrwetness Criterion Based on the Accident of a Fore-Bridge-Ship - (황천항해중인 선수선교선의 내항성능평가기준 설정 방안에 관한 연구 - 해난사고 실례를 통한 갑판침수 평가기준치 설정에 대한 개선방안 고찰 -)

  • 공길영;김철승
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.7 no.3
    • /
    • pp.17-28
    • /
    • 2001
  • The wheelhouse front glass of a Fore-Bridge-Ship (Ro-Ro Ship) was broken by the shipping of water in rough seas, and then the flooding of seawater into the wheelhouse caused the uncontrollable condition of the ship. The hull which was entered into the floating condition rolled severely, and the heavy rolling caused secondary damage such as the collapse of a lot of cargo. It was an incredible accident because the height of bow freeboard was about 2.5 times higher than the standard height of minimum bow freeboard regulated by the International Load Line Convention(1966). And it would be also difficult for navigators to imagine a great deal of seawater flooding into the wheelhouse because the front glass was positioned at about 20m height above the sea surface. In this paper, we carried out the evaluation for the safety navigation of the Fore-Bridge-Ship numerically against ship's speed and encountering angle to the wave in each sea state of rough sea, by using the integrated seakeeping performance index (ISPI) which is able to evaluate synthetically the safety operation of ships. And then the problem on the application of the past criteria proposed as the safety navigation of a merchant ship was clarified by inquiring the dangerousness of the shipping of water at her bow deck, which caused the breakage of the wheelhouse front glass.

  • PDF

Heat Transfer Characteristics of Bulkhead Penetration Piece for A60 Class Compartment I: Transient Thermal (A60급 구획 적용 격벽 관통용 관의 열전달 특성 I: 관의 설계에 따른 과도 열해석)

  • Park, Woo-Chang;Song, Chang Yong;Na, Ok-Gyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.5
    • /
    • pp.310-323
    • /
    • 2018
  • In order to protect lives and prevent large-scale injuries in the event of a fire on a ship or an offshore plant, most classification societies are strengthening their fire resistance designs of relevant cargo holds and accommodation compartments to keep flames from being transferred from a fire point to other compartments. Particularly in critical compartments, where flames should not propagate for a certain period of time, such as the A60 class division, both the airtightness and fire-resistant design of a piece passing through a bulkhead are subject to the Safety of Life at Sea Convention (SOLAS) issued by the International Maritime Organization (IMO). In order to verify the suitability of a fire-resistant design for such a penetrating piece, the fire test procedure prescribed by the Maritime Safety Committee (MSC) must be carried out. However, a numerical simulation should first be conducted to minimize the time and cost of the fire resistance test. In this study, transient thermal analyses based on the finite element method were applied to investigate the heat transfer characteristics of a bulkhead penetration piece for the A60 class compartment. In order to determine a rational bulkhead penetration piece design, the transient heat transfer characteristics according to the variation of design parameters such as the diameter, length, and material were reviewed. The verification of the design specification based on a numerical analysis of the transient heat transfer performed in this study will be discussed in the following research paper for the actual fire protection test of the A60 class bulkhead penetration piece.

An Analysis of the International Transportation Route at the Sight of Wind Power Equipment Manufacturing Company (풍력발전부품 제조업체의 관점에서 본 국제 운송경로 분석)

  • Yun, Seok-Hwan;Park, Jin-Hee
    • Journal of Navigation and Port Research
    • /
    • v.39 no.4
    • /
    • pp.361-370
    • /
    • 2015
  • Wind energy began to receive attention as a new alternative fuel since 20 years ago and is growing as a booming global business model. Global wind power generation in the world has been continuously increasing for the past 10 years, accounting for over 30% of cumulative rate compared to total power generation. Global demand for wind power generation is gradually expanding due to restriction on carbon emission and environmental problems caused by increased greenhouse effect. Accordingly in this study, current transportation routes are classified into three types including access-priority route, economics-priority route, and convenience- priority route depending on distribution characteristics of wind power equipment in order to suggest transportation methods other than ships. The three types of transportation route that this study declared can make the Wind power equipment manufacturing companies can judge not only the duration of transportation but also effectiveness and economic feasibility. It means that the manufacturers can analyze and compare the effectiveness and economic feasibility, which are proceed by the shipping company and freight forwarder until now days.

A Study on Minimum Weight Design of Horizontal Corrugated Bulkheads for Chemical Tankers (화학제품 운반선 수평 파형격벽의 최소중량설계에 관한 연구)

  • Shin, Sang-Hoon;Ko, Dae-Eun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.51-56
    • /
    • 2016
  • Corrugated bulkheads have many advantages compared to stiffened bulkheads, and they have thus been used for the cargo tank bulkheads of commercial vessels, such as bulk carriers, product oil carriers, and chemical tankers. Various studies have been carried out to find the optimum corrugation shape for bulk carriers, but optimum design studies for chemical tankers with bulkheads made of high-priced materials are scarce. The purpose of this study is to develop a minimum weight design method for horizontal corrugated bulkheads for a chemical tanker. An evolution strategy (ES) that searches for a reliable global optimum point was applied as an optimization technique, and the structural safety of the optimum design was verified through structural analysis using the finite element method (FEM). The results were compared with those of an existing ship, which showed a weight reduction of about 14% with equivalent structural strength.

A Study on the Impacts of Truck Platooning on Freeway Traffic-Flow and the Effect of Dedicated Lane (고속도로 화물차의 군집주행이 교통류에 미치는 영향 및 전용차로 효과 연구)

  • KIM, Joohye;Lee, YoungIhn
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.5
    • /
    • pp.52-69
    • /
    • 2020
  • Considering the need for an infrastructure-level review, this study analyzed the impact of truck platooning on freeway traffic flow and the effect of dedicated lanes based on domestic road and traffic conditions. According to the study, the higher traffic volume and truck ratio, the higher ratio of platoons and the greater size of platoons are formed, which results in greater effect of increasing the average speed of the network. Therefore, the routes with heavy traffic and heavy cargo traffic could be positively considered for truck platooning. However, the analysis showed that the effect of increasing the average speed of the entire network is difficult to expect in the event of a queue due to entry and exit, and that the overall network's throughput could be reduced. Therefore, traffic operation strategies associated with the access road, such as securing capacity of the connection, are needed to maximize the effect of truck platooning. When it comes to the effect of dedicated lane, it could have a positive effect only if one lane was fully operated by automated trucks under the condition of 100% MPR, which allowed positive effects in all aspects, such as higher average speed, throughput, and reduced conflict rates.

APP Tail 1 (PAT1) Interacts with Kinesin Light Chains (KLCs) through the Tetratricopeptide Repeat (TPR) Domain (APP tail 1 (PAT1)과 kinesin light chains (KLCs)의 tetratricopeptide repeat (TPR) domain을 통한 결합)

  • Jang, Won Hee;Kim, Sang-Jin;Jeong, Young Joo;Jun, Hee Jae;Moon, Il Soo;Seog, Dae-Hyun
    • Journal of Life Science
    • /
    • v.22 no.12
    • /
    • pp.1608-1613
    • /
    • 2012
  • A conventional kinesin, KIF5/Kinesin-I, transports various cargoes along the microtubule through interaction between its light chain subunit and the cargoes. Kinesin light chains (KLCs) interact with many different cargoes using their tetratricopeptide repeat (TPR) domain, but the mechanism underlying recognition and binding of a specific cargo has not yet been completely elucidated. We used the yeast two-hybrid assay to identify proteins that interact with the TPR domain of KLC1. We found an interaction between the TPR domain of KLC1 and an amyloid precursor protein (APP)-binding protein PAT1 (protein interacting with APP tail 1). The yeast two-hybrid assay demonstrated that the TPR domain-containing region of KLC1 mediated binding to the C-terminal tail region of PAT1. PAT1 also bound to KLC2 but not to kinesin heavy chains (KIF5A, KIF5B, and KIF5C) in the yeast two-hybrid assay. These protein-protein interactions were also observed in the glutathione S-transferase (GST) pull-down assay and by co-immunoprecipitation. Anti-PAT1 antibody as well as anti-APP anti-body co-immunoprecipitated KLC and KHCs associated with PAT1 from mouse brain extracts. These results suggest that PAT1 could mediate interactions between Kinesin-I and APP containing vesicles.

Structural Safety Assessment of a Sunken Ship Considering Hull Corrosion and Damaged Members - Focus on the Sunken Ship 'No. 7 HaeSung' - (선체 부식 및 손상 부재를 고려한 침몰선박의 구조 안전성 평가에 관한 연구 - 제7 해성호를 중심으로 -)

  • Lee, Seung Hyun;Kim, Won Don;Suh, Jae-Joon
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.4
    • /
    • pp.332-340
    • /
    • 2016
  • Sunken ships cause damage to the environment due to the dispersal of fuel oil and harmful cargo goods in the hull. Since the sunken ship is mostly flooded by the seabed, it tends to be in a relatively stable condition. However, the heavy body, together with the load of remaining goods in the cargo hold, the constant contact with the seabed, and ocean currents and tidal waves, can affect dispersal of residual fuel oils out of the sunken ship. Corrosion of the sunken ship starts upon sinking, decreasing the thickness of the hull structure and sub-materials. Therefore, it is necessary to assess the structural stability against the potential breakdown of the sunken ship. Whilst evaluating the danger of the sunken ship, this result should be reflected in 'the possible discharge'. This study was undertaken to suggest a procedure for a step by step evaluation to assess the structural stability a sunken ship. The structural stability assessment to estimate the collapsibility of the hull was structure targeted at the sunken ship 'No. 7 HaeSung', which was classified as the prime example for the intensive management of sunken ships. This study was undertaken to suggest a procedure for a step by step evaluation to assess the structural stability a sunken ship and to propose a method to conduct a structural safety assessment that estimates the collapsibility of the hull by targeting the sunken ship 'No. 7 HaeSung',which was classified as the prime example for the intensive management of sunken ships. The collapsibility of the hull structure was estimated Based on the damage size of the hull structure, and the corrosion rate of the hull structure and sub-materials due to the seawater after sinking. It was confirmed that there was a low possibility of the total destruction of the hull structure at the current time. However, there is a high possibility in the potential failure of the hull structure due to increased rate of corrosion thereafter. Therefore, we believe continuous study on influence of corrosion and marine environment change to sunken ship's structural safety is necessary.

Glutamate-rich 4 Binds to Kinesin Superfamily Protein 5A (Glutamate-rich 4와 kinesin superfamily protein 5A와의 결합)

  • Se Young Pyo;Young Joo Jeong;Sung Woo Park;Mi Kyoung Seo;Won Hee Lee;Sang-Hwa Urm;Sang Jin Kim;Mooseong Kim;Jung Goo Lee;Dae-Hyun Seog
    • Journal of Life Science
    • /
    • v.33 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • Intracellular cargo transport is mediated by molecular motor proteins, such as kinesin and cytoplasmic dynein. Kinesins make up a large subfamily of molecular motors. Kinesin-1 is a plus-end-directed molecular motor protein that moves various cargoes, such as organelles, protein complexes, and mRNAs, along a microtubule track. It consists of the kinesin superfamily protein (KIF) 5A, 5B, and 5C (also called kinesin heavy chains) and kinesin light chains (KLCs). Kinesin-1 interacts with many different binding proteins through its carboxyl (C)-terminal region of KIF5s and KLCs, but their binding proteins have not yet been fully identified. In this study, a yeast two-hybrid assay was used to identify the proteins that interact with the KIF5A specific C-terminal region. The assay revealed an interaction between KIF5A and glutamate-rich 4 (ERICH4). ERICH4 bound to the KIF5A specific the C-terminal region but did not interact with the C-terminal region of KIF5B or KIF3A (a motor protein of kinesin-2). In addition, KIF5A did not interact with another isoform, ERICH1. Glutathione S-transferase (GST) pull-downs showed that KIF5A interacts with GST-ERICH4 and GST-ERICH4-amino (N)-terminal but not with GST-ERICH4-C or GST alone. When co-expressed in HEK-293T cells, ERICH4 co-localized with KIF5A and co-immunoprecipitated with KIF5A and KLC but not KIF3B. Together, our findings suggest that ERICH4 is capable of binding to KIF5A and that it may serve as an adaptor protein that links kinesin-1 with cargo.