• Title/Summary/Keyword: Heating-conditioning

Search Result 1,161, Processing Time 0.021 seconds

Importance-Performance Analysis of Operation of Specialized Complexes for Horticultural Production (원예전문생산단지 운영에 대한 중요도-만족도 분석)

  • Hong, Na-Kyoung;Rhee, Zae-Woong;Kim, Tae-Kyun
    • Current Research on Agriculture and Life Sciences
    • /
    • v.33 no.1
    • /
    • pp.25-31
    • /
    • 2015
  • This study investigated the operation criteria of specialized complexes for horticultural production reflecting the farmers' preferences. First, the analysis of the communal activity included six factors: the group purchase of consumables for common activity, group purchase of the greenhouse apparatus, cooperative seed raising, use of a common air conditioning and heating system, cooperative shipping, and soil examination and certification system. The results of the Importance-Performance analysis can be summarized as follows. The factors requiring good management included the group purchase of consumables for common activity, group purchase of the greenhouse apparatus, and cooperative shipping. The factors with a lower priority included cooperative seed raising and the use of a common air conditioning and heating system. While the importance of the soil examination and certification system was low, the satisfaction was high, so this factor needs to be managed to avoid overkill. Second, the analysis of information exchange and education included six factors: production technique information, greenhouse facility management information, distribution-related information, production technique education, greenhouse facility management education, and distribution-related education. The results of the Importance-Performance analysis can be summarized as follows. The factor of production technique education was the most important determinant, plus the factors requiring good management included production technique information, greenhouse facility management information, and distribution-related information. The factors with a lower priority included greenhouse facility management education and distribution-related education. Therefore, to enhance productivity through facility modernization, the scaling up and creation of more specialized horticulture complexes are recommended as policy measures to gain export competitiveness. As the Korean government is expected to expand the scale of specialized horticulture complexes, the results of this paper can be widely utilized.

A Study on An Integrated GEO/TES with Geothermal Heat Exchanger and Thermal Ice Storage (지중열 교환기와 빙축열조(Thermal Ice Storage)를 연계시킨 통합 지중열-빙축열조 시스템(Integrated GEO/TES))

  • Lohrenz ED.;Hahn Jeongsang;Han Hyuk Sang;Hahn Chan;Kim Hyoung Soo
    • Economic and Environmental Geology
    • /
    • v.38 no.6 s.175
    • /
    • pp.717-729
    • /
    • 2005
  • Peak cooling load of large buildings is generally greater than their peak heating load. Internal and solar heat gains are used fur selection of adquate equipment in large building in cold winter climate like Canada and even Korea. The cost of geothermal heat exchanger to meet the cooling loads can increase the initial cost of ground source heat pump system to the extend less costly conventional system often chosen. Thermal ice storage system has been used for many years in Korea to reduce chiller capacity and shift Peak electrical time and demand. A distribution system designed to take advantage of heat extracted from the ice, and use of geothermal loop (geothermal heat exchanger) to heat as an alternate heat source and sink is well known to provide many benifits. The use of thermal energy storage (TES) reduces the heat pump capacity and peak cooling load needed in large building by as much as 40 to $60\%$ with less mechanical equipment and less space for mechanical room. Additionally TES can reduce the size and cost of the geothermal loop by 1/3 to 1/4 compared to ground coupled heat pump system that is designed to meet the peak heating and cooling load and also can eliminate difficuties of geothermal loop installation such as space requirements and thermal conditions of soil and rock at the urban area.

Study on the Fire Risk Prediction Assessment due to Deterioration contact of combustible cables in Underground Common Utility Tunnels (지하공동구내 가연성케이블의 열화접촉으로 인한 화재위험성 예측평가)

  • Ko, Jaesun
    • Journal of the Society of Disaster Information
    • /
    • v.11 no.1
    • /
    • pp.135-147
    • /
    • 2015
  • Recent underground common utility tunnels are underground facilities for jointly accommodating more than 2 kinds of air-conditioning and heating facilities, vacuum dust collector, information processing cables as well as electricity, telecommunications, waterworks, city gas, sewerage system required when citizens live their daily lives and facilities responsible for the central function of the country but it is difficult to cope with fire accidents quickly and hard to enter into common utility tunnels to extinguish a fire due to toxic gases and smoke generated when various cables are burnt. Thus, in the event of a fire, not only the nerve center of the country is paralyzed such as significant property damage and loss of communication etc. but citizen inconveniences are caused. Therefore, noticing that most fires break out by a short circuit due to electrical works and degradation contact due to combustible cables as the main causes of fires in domestic and foreign common utility tunnels fire cases that have occurred so far, the purpose of this paper is to scientifically analyze the behavior of a fire by producing the model of actual common utility tunnels and reproducing the fire. A fire experiment was conducted in a state that line type fixed temperature detector, fire door, connection deluge set and ventilation equipment are installed in underground common utility tunnels and transmission power distribution cables are coated with fire proof paints in a certain section and heating pipes are fire proof covered. As a result, in the case of Type II, the maximum temperature was measured as $932^{\circ}C$ and line type fixed temperature detector displayed the fire location exactly in the receiver at a constant temperature. And transmission power distribution cables painted with fire proof paints in a certain section, the case of Type III, were found not to be fire resistant and fire proof covered heating pipes to be fire resistant for about 30 minutes. Also, fire simulation was carried out by entering fire load during a real fire test and as a result, the maximum temperature is $943^{\circ}C$, almost identical with $932^{\circ}C$ during a real fire test. Therefore, it is considered that fire behaviour can be predicted by conducting fire simulation only with common utility tunnels fire load and result values of heat release rate, height of the smoke layer, concentration of O2, CO, CO2 etc. obtained by simulation are determined to be applied as the values during a real fire experiment. In the future, it is expected that more reliable information on domestic underground common utility tunnels fire accidents can be provided and it will contribute to construction and maintenance repair effectively and systematically by analyzing and accumulating experimental data on domestic underground common utility tunnels fire accidents built in this study and fire cases continuously every year and complementing laws and regulations and administration manuals etc.

Winter Indoor Thermal Environment Status of Nursery Rooms in Workplace Daycare Centers in Jeju Island (제주지역 직장어린이집 보육실의 겨울철 실내온열환경 실태)

  • Kim, Bong-Ae;Ko, Youn-Suk
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.33 no.12
    • /
    • pp.81-90
    • /
    • 2017
  • This study was conducted to investigate the thermal environment status of nursery rooms in workplace daycare centers in Jeju and propose measures to improve their indoor physical thermal environment. For this purpose, measurements were performed in the winter indoor physical environment of 51 nursery rooms in 11 workplace daycare centers and a psychological evaluation survey on the thermal environment of nursery rooms was conducted for 70 nursery teachers. The investigation was carried out over 11 days in January 2017. The results are as follow. The average indoor temperature of the nursery rooms was $21.3^{\circ}C$($18.7-23.8^{\circ}C$) and the indoor temperatures of 47 nursery rooms (92.9%) were higher than the environmental hygiene management standard for domestic school facilities ($18-20^{\circ}C$). The average relative humidity was 33.9% (16.4-56.0%), and 37 nursery rooms (86.3%) showed a lower average relative humidity than the standard (40-70%). The average absolute humidity was $9.1g/m^3$ ($4.7-13.6g/m^3$), which was lower than the standard for preventing influenza ($10g/m^3$). When the indoor temperature and humidity of the nursery rooms were compared with international standards, it was found that 85% or more of the 51 nursery rooms maintained appropriate indoor temperatures, but 40-50% of the nursery rooms maintained a low humidity condition. Therefore, they need to pay attention to maintaining the appropriate humidity of the nursery room to keep the children healthy. The average indoor temperature of the nursery rooms showed a weak negative correlation with the average relative humidity. The indoor temperature had a significant effect on the relative humidity: a higher indoor temperature resulted in lower relative humidity. Regarding the fluctuations in the average indoor temperature of the nursery rooms during the day, in daycare centers that used floor heating, the indoor temperature gradually increased form the morning to the afternoon and tended to decrease during lunch time and the morning and afternoon snack times, due to ventilation. The daycare centers that used both floor heating and ceiling-type air conditioners showed a higher indoor temperature and greater fluctuations in temperature compared to the daycare centers that used floor heating only. In the survey results, the average value of the whole body thermal sensation was 3.0 (neutral): 32 respondents (62.7%) answered, "Neutral", Which was the largest number, followed by 21 respondents (30%) who answered, "Slightly hot" and 17 respondents (24.2%) who answered, "Slightly cold." Twenty-nine respondents answered, "Slightly dry," which was the largest number, followed by 28 respondents (54.9%) who answered, "Neutral" and 10 respondents (19.6%) who answered, "Dry." The total number of respondents who answered, "Slightly dry" or "Dry" was large at 39 (56.4%), which suggests the need for indoor environment management to prevent a low-humidity environment. To summarize the above results about the thermal environment of nursery rooms, as the indoor temperature increased, the relative humidity decreased. This suggests the effect of room temperature on the indoor relative humidity; however, frequent ventilations also greatly decrease the relative humidity. Therefore, the ventilation method and the usage of air conditioning systems need to be re-examined.

Analysis of Loss of HVAC for Nuclear Power Plant (원전의 공기조화설비(HVAC) 상실사고 분석방법)

  • Song, Dong-Soo
    • Journal of Energy Engineering
    • /
    • v.23 no.1
    • /
    • pp.90-94
    • /
    • 2014
  • Environmental qualification (EQ) for safety-related equipment is required to ensure that those equipment will perform their required function even under the harsh environment conditions arising from design basis accident in the nuclear power plant. As a part of EQ program, the room temperature analysis in case of a loss of Heating, Ventilation, and Air Conditioning(HVAC) system was carried out to ensure the operability of the safety-related equipment of a nuclear power plant randomly chosen among the Korean nuclear power plants. In this paper, this analysis was performed in the conservative perspective using GOTHIC code. The room temperature analysis includes selecting the rooms in which the safety related equipment are located but not supported by safety related HVAC and determining the temperature of the selected rooms. Target rooms for the analysis consist of W229/W237 (Aux. feedwater pump room), W232 (Aux. feedwater tank room) and W230 (Equipment passageway). The results showed the temperature range from $43^{\circ}C$ to $83^{\circ}C$, in 72 hours after a loss of HVAC. Those values are far below of generic EQ temperature($171^{\circ}C$). Therefore, it is satisfied with EQ requirement of temperature limits on safety related equipment.

A Study on $CO_2$ and PM10 Changes by Operation of KTX HVAC-Pressurization Equipment in Tunnel Sections (터널구간 운행시 KTX HVAC-여압장치 작동에 따른 $CO_2$와 PM10 변화연구)

  • So, Jin-Sub;Yoo, Seong-Yeon
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.6
    • /
    • pp.723-729
    • /
    • 2007
  • The Ministry of Environment established a guide line in December 2006, "Indoor Air Quality Management guidelines in Public Facilities." As the items of the guideline, $CO_2$ (Carbon dioxide) and PM10 (particulate matter) is shown to Level 1 and 2. Therefore trains and subways are included. There are a lot of tunnels by the lay of mountains on KTX (Korean Train Express) service. HVAC (Heating Ventilating and Air-conditioning)-pressurization equipment on KTX is various functioning flaps blocking outside pressure waves. At that time, the fresh air is blocked by flap operation and the air is circulated by return air. In this study, we measured the time series of $CO_2$ and PM10 concentrations in the KTX passenger cabin during the train service of Gyongbu line (Seoul-Busan) and Honan line (Yongsan-Mokpo) from July 2006. Also, analyzed the air quality by operation of KTX HVAC-pressurization equipment in tunnel passing point. As a result, PM10 concentration was totally lower than the regulation values. However, $CO_2$ was highly correlated with several tunnels, such as Oksan-Otan, Godeung-Hyudae and Gaechak-Iijik tunnel. but, the indoor air quality of KTX train have been proved satisfy the recommendation the Ministry of Environment guidelines.

Heat-up Calculation for the Auxiliary Feed Water Pump Room at Ulchin Units 3 and 4 for Loss of HVAC Accidents (HVAC 상실사고시 울진원전 3/4 호기의 보조급수펌프 격실 온동상승 평가)

  • Yoon, Churl;Park, Jin-Hee;Hwang, Mee-Jeong;Han, Sang-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.5
    • /
    • pp.553-562
    • /
    • 2012
  • Computational Fluid Dynamics (CFD) analysis has been performed to estimate the air temperature inside an Auxiliary Feed Water (AFW) Motor-Driven (MD) pump room for the case where there is loss of Heating, Ventilation, and Air-Conditioning (HVAC). A transient calculation for the closed pump room without cooling by any HVAC system shows that the volume-averaged air temperature reaches around $60^{\circ}C$ for a transient period of 8.0 h. From previous studies, the external air and surface boundary temperatures are assumed to increase slowly starting from an initial temperature of $35^{\circ}C$. For the cases where the door is opened at 2, 4, and 6 h after the initiation of HVAC failure, the average air temperature promptly drops by about $4^{\circ}C$ when the door is opened and then slowly increases. The current calculations based on the CFD technique predict the rate of increase of air temperature to be lower than that determined by previous conservative calculations on the basis of a lumped model.

Patient's Satisfaction with Medical Care Services in Hospital (병원 이용자의 의료서비스 만족도 조사)

  • Sung, Jung-Ae;Nam, Chul-Hyun;Kim, Soung-Woo;Kim, Gui-Suk;Koo, Hyun-Jin;Yoo, Eun-Joo
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.10 no.1
    • /
    • pp.109-121
    • /
    • 2006
  • The purpose of this study was to determine factors influencing patient satisfaction with medical services in hospital, which is classified into environmental aspect, human services and procedural services. Based on the results of literature review, the study focused on effects of social-demographical factors on patient satisfaction. The environmental aspect of medical care services included medical equipment and facilities, hygiene, ventilation, heating and air-conditioning, waiting and resting space, ward space and parking facilities. Procedural service included registration process, bill payment, waiting time after registration, examination and prescription as well as appointment process. Human services consisted of physicians listening to stories of patients, examination duration, physicians' explanation and physicians' service. As for nurses, explanation about disease, examination procedure and results, kindness and nursing care were evaluated. Services provided by other staff members were also evaluated. Patient satisfaction, defined as individual attitude toward medical service as a whole, was measured using a questionnaire. A total of 700 in-or out-patients were surveyed in 6 hospitals with more than 300 beds in North Gyeongbuk Province. 1. The level of patient satisfaction varied with characteristics of patients. Male patients and those in their 30s had a low level of satisfaction. Dissatisfaction level was positively related to education level but negatively related to economic condition. 2. As for patient satisfaction with medical service providers and other employees in hospital, satisfaction level with physician's explanation about treatment was higher. But dissatisfaction levels with treatment duration and the lack of explanation about examination procedures were high, calling for improvement. Dissatisfaction level with nursing care was high, calling for training of nurses for better service. Given the low level of satisfaction with human services, hospital employees need to be trained to improve their service. 3. It Was found that administrative service was also a significant factor influencing patient satisfaction in addition to medical service. It is therefore important for hospitals to provide patients with prompt and convenient procedural service. 4. Environmental factors such as medical equipment and amenity facilities also affected patient satisfaction. Thus environmental condition, procedural service and human service are all important to improve medical service in hospital. In summary, procedural service was the most significant factor for patient satisfaction. The level of satisfaction in patients was also affected by human service and environmental condition. It is therefore necessary to take patient-oriented approach in providing medical service in an effort to improve patient satisfaction. The finding of a lower level of satisfaction with human service signifies the need for training of healthcare providers and other hospital employees for better services. The introduction of advanced management programs is also needed to improve procedures that patients go through in hospitals.

  • PDF

Development on Glass Formulation for Aluminum Metal and Glass Fiber (유리섬유 및 알루미늄 금속 혼합물 유리조성 개발)

  • Cho, Hyun-Je;Kim, Cheon-Woo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.4
    • /
    • pp.247-254
    • /
    • 2012
  • Vitrification technology has been widely applied as one of effective processing methods for wastes generated in nuclear power plants. The advantage of vitrifying for low- and intermediate-level radioactive wastes has a large volume reduction and good durability for the final products. Recently, a filter using on HVAC(Heating Ventilating & Air Conditioning System) is composed with media (glass fiber) and separator (aluminum film) has been studied the proper treatment technology for meeting the waste disposal requirement. Present paper is a feasibility study for the filter vitrification that developing of the glass compositions for filter melting and melting test for physicochemical characteristic evaluation. The aluminum metal of film type is preparing with 0.5 cm size for proper mixing with glass frit, glass fiber is also preparing with 1 cm size within crucible. The glass compositions should be developed considering molten glass are related with wastes reduction. Glass compositions obtained from developing on glass formulation are mainly composed of $SiO_2$ and $B_2O_3$ for aluminum metal. A variety of factors obtained from the glass formulation and melting test are reviewed, which is feeding rate and glass characteristics of final products such as durability for implementing the wastes disposal requirement.

Monitoring of Formaldehyde Concentration in Exhibition Hall Using Passive Sampler (Passive Sampler를 이용한 유물 전시관내 폼알데하이드 농도 모니터링)

  • Lee, Sun Myung;Lim, Bo A;Kim, Seojin
    • Journal of Conservation Science
    • /
    • v.33 no.5
    • /
    • pp.319-329
    • /
    • 2017
  • In this study, formaldehyde concentrations in two exhibition halls were monitored using a passive sampler from May 2012 to April 2013. Formaldehyde concentrations in the exhibition halls were 5 to 36 times higher than concentrations outdoors. Concentrations inside the exhibition room and showcase varied according to pollutant source, HVAC(heating, ventilation, air conditioning)system and environment management. The formaldehyde concentration levels were corrected according to a standard method prescribed by Indoor Air Quality Management Law of the Ministry of Environment, Korea. As a result, Most concentration levels exceeded the exhibition standard of the Ministry of Environment($100{\mu}g/m^3$) and artifacts conservation standard of Tokyo National Museum($50{\mu}g/m^3$). Seasonal concentrations in the exhibition room and showcase were in the order summer>fall>spring>winter. Formaldehyde emissions increased in summer when air temperature and relative humidity are both high. Formaldehyde concentration distribution according to the temperature and relative humidity showed positive correlation. Air temperature showed good correlation because $R^2$ was in the range of 0.8~0.9. Analysis of formaldehyde emission characteristics in the exhibition hall would be helpful in efforts to improve indoor air quality.