• Title/Summary/Keyword: Heating for Greenhouse

Search Result 331, Processing Time 0.032 seconds

Development of On-site Heat Loss Audit and Energy Consulting System for Greenhouse

  • Kwon, Jin Kyung;Kang, Geum Choon;Lee, Seong Hyun;Sung, Je Hoon;Yun, Nam Kyu;Moon, Jong Pil;Lee, Su Jang
    • Journal of Biosystems Engineering
    • /
    • v.38 no.4
    • /
    • pp.287-294
    • /
    • 2013
  • Purpose: Greenhouses for a protected horticulture covered with a plastic or glass are easy to have weakness in a heat loss by deterioration, damage, poor construction, and so on. To grasp the vulnerable points of heat loss of the greenhouses is important for heating energy saving. In this study, an on-site heat loss audit and energy consulting system were developed for an efficient energy usage of a greenhouse. Method: Developed system was mounted with infrared thermal and visual cameras to grasp the heat loss from the greenhouse quickly and exactly, and a trial calculation program of heating load of greenhouse to provide farmers with the information of heating energy usage. Results: Developed system could print out the reports about the locations and causes of the heat losses and improvement methods made up by an operator. The mounted trial calculation program could print out the information of the period heating load and fuel cost according to the conditions of greenhouse and cultivation. The program also mounted the databases of the information on the 13 horticultural energy saving technologies developed by the Korea Rural Development Administration and simple economic analysis sub-program to predict the payback period of the technologies. Conclusion: The developed system was expected to be used as the basic equipment for an instructors of district Agricultural Technology and Extension Centers to conduct the energy consulting service for the farmers within the jurisdiction.

A Study on the Greenhouse Water Curtain System: Heat Transfer Characteristics

  • 손원명;한길영
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.32 no.E
    • /
    • pp.80-87
    • /
    • 1990
  • Energy balance equations Were developed to describe the heat transfer mechanisms in a double layer plastic greenhouse with a water curtain system. Heat transfer variables were determined by using various temperature data measured in a conventional prototype semicircular cross-section greenhouse over a range of water temperatures and water flow rates. The heat transfer coefficient between flowing water and greenhouse air was independent of water flow rates. But the heat transfer coefficient between water surface and the stagnant air space within the double plastic layer was dependent on water flow rates. Substituting the heat transfer coefficients, determined from the energy balance equations in the heat transfer equations, demonstrated various relationships among ambient air temperature, greenhouse air temperature, water temperature, and water flow rates. The heating benefits were linearly related to not only the inside and outside air temperatures but also to the water temperature. The energy conservation effects of the water curtain system were found even initial water temperatures were considerably lower than the greenhouse setting temperatures. Sensitivity analysis for heat transfer coefficients demonstrated that the heat transfer coefficient between greenhouse air and the stagnant air within the plastic layers was the most significant coefficient in the estimation of heating effects.

  • PDF

A Study on Field test of the Horizontal Ground Source Heat Pump for Greenhouse (시설원예용 수평형 지열히트펌프 시스템 실증연구)

  • Park, Yong-Jung;Kang, Shin-Hyung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.505-510
    • /
    • 2007
  • Greenhouses should be heated during nights and co Id days in order to fit growth conditions in greenhouses. Ground source heat pump(GSHP) or geothermal heat pump system(GHPs) is recognized to be outstanding heating and cooling system. Horizontal GSHP system is typically less expensive than vertical GSHP system but requires wide ground area to bury ground heat exchanger (GHE). In this study, a horizontal GSHP system with thermal storage tank was installed in greenhouse and investigated as performance characteristics. In the daytime, heating load of greenhouse is very small or needless because solar radiation increases inner air temperature. The results of study showed that the heating coefficient of performance of the heat pump($COP_h$) was 2.9 and the overall heating coefficient of performance of the system($COP_{sys}$) was 2.4. Heating energy cost was saved 76% using the horizontal GSHP system with thermal storage tank.

  • PDF

Analysis on Heating Effects of the Vertical Type Geothermal Heat Pump System

  • Kang, Youn Ku;Ryou, Young Sun;Jang, Jae Kyung;Kim, Young Hwa
    • Journal of Biosystems Engineering
    • /
    • v.39 no.2
    • /
    • pp.69-75
    • /
    • 2014
  • Purpose: This paper is aimed at analyzing the heating performance of the vertical closed loop type Geothermal Heat Pump System (GHPS) distributing the farm site and providing basic data of the GHPS. Method: Seedling greenhouse heating was made from October 2012 to May 2013. The seedling greenhouse was divided into 4 sectors (A, B, C and D zone, total $3,300m^2$) with different temperatures. It was heated from 5PM to 8AM, and during the night the greenhouse was covered by non-woven fabric thermal curtains along the upper 2m of the greenhouse for temperature maintenance. In order to analyze the heating performance of the GHPS, power consumption and operating time of the GHPS, inlet and outlet water temperature of the condenser, temperatures of each zone of the greenhouse, and ambient temperature were measured. Results: When operating only one heat pump unit, heat generated in the condenser decreased as the experiment progressed and power consumption increased correspondingly. However, the heating coefficient of performance decreased from 3.3 to 2.0 rapidly. Also, when operating two heat pump units, heat generated in the condenser decreased and power consumption increased. Heating coefficient of performance decreased from 4.5 to 3.7 rapidly. When the set temperature of the greenhouse was $13.7{\sim}20.1^{\circ}C$ and minimum ambient temperature was $-20.8{\sim}4.8^{\circ}C$, the annually accumulated heat and power consumption were 520,623 kW, 142,304 kW, respectively. Conclusion: When the set temperature of the greenhouse was $13.7{\sim}20.1^{\circ}C$ and the minimum ambient temperature was $20.8{\sim}4.8^{\circ}C$, the annually accumulated heat and power consumption were 520,623 kW, 142,304 kW, respectively. When operating only one heat pump unit, the heating COP was 2.0~3.3, and when operating 2 heat pump units, it was 3.7~4.5. If several heat pumps are installed in one GHPS, it is suggested that all heat pumps be operated except in special cases. Because the scale of the water pumps are set to the scale of when all heat pump units are operating, if even one unit is not operating, the power consumption will increase. That becomes the cause of COP decrease.

Development of Heat Pump System for the Greenhouse Heating

  • Song, Hyun-Kap;Ryou, Young-Sun;Park, Jong-Kil
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.1101-1116
    • /
    • 1996
  • It is desirable to use the renewable energy for the greenhouse heating in winter season, it makes possible not only to save fossil fuel and conserve green farm environment but also to promote the quality of agricultural products and reduce the agricultural production cost. In this study the heat pump system was developed to use the natural energy as thermal energy resource for the thermal environment control of the greenhouse.

  • PDF

Mechanism Improvement of the Heat Exchanger for the Thermal Efficiency Increase of Hot Air Heater (온풍난방기의 열효율 증대를 위한 열교환기 구조개선)

  • Kang, Geum-Choon;Kang, Yoen-Ku;Ryou, Young-Sun;Kim, Young-Joong;Lee, Si-Young;Paek, Yee
    • Journal of Biosystems Engineering
    • /
    • v.34 no.5
    • /
    • pp.363-370
    • /
    • 2009
  • Hot air heater with light oil combustion is used as the most common heater for greenhouse heating in the winter season. Hot air heaters of 256,246 units have been supplied as main greenhouse heating equipment until 2008 and greenhouse heating cost has reached to 620 billions won in Korea. In order to improve the thermal efficiency of the hot air heater and to reduce the expenses for greenhouse heating, prototype hot air heater was manufactured and tested in this experiment. The heat exchanger of tested prototype hot air heater was circular and hexagonal pipe type and inline and stagger arrangement type. Capacity of the heating was 43,062 kJ/h and total heat transfer area of the heat exchanger was $10.728\;m^2$. According to the performance test, it could supply heat of 38,240 to 35,100 kJ/h depending on the fan motor speed of 1,740~1,220 rpm, respectively. Thermal efficiency of hot air heater was 87.0% to 80.8% in the same conditions. As a result, thermal efficiency of hot air heater with hexagonal pipe-stagger arrangement heat exchanger developed in this study was higher 10.2% than that of conventional hot air heater and heating energy saving rate of 14.3% increased.

Study on Heating Performance of Hybrid Heat Pump System Using Geothermal Source and Solar Heat for Protected Horticulture (시설원예용 지열 및 태양열 이용 하이브리드 히트펌프 시스템의 난방성능에 관한 연구)

  • Jeon, Jong Gil;Lee, Dong Geon;Paek, Yee;Kim, Hyung Gweon
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.5
    • /
    • pp.49-56
    • /
    • 2015
  • In this study a hybrid heating system based on geothermal source and solar heat was developed in order to save energy for greenhouse heating and its field performance was evaluated. Developed system are composed of following parts: water tank, heat exchanger, heat pump, fan coil unit and heat storage unit. The working performance test was carried out in a greenhouse cultivating oriental orchids being managed by $23^{\circ}C$. Field performance test results showed that average heating coefficient of performance ($COP_h$) was 3.4 for the period from mid-January to mid-March 2013. Heating coefficient of performance ($COP_h$) of developed hybrid heat pump system was more sensitive to water tank temperature than outside air temperature. This study showed that developed hybrid heat pump system has a potential to save the heating costs up to 91% compared to conventional agricultural oil heaters.

Design of Energy Model of Greenhouse Including Plant and Estimation of Heating and Cooling Loads for a Multi-Span Plastic-Film Greenhouse by Building Energy Simulation (건물에너지시뮬레이션을 활용한 연동형 온실 및 작물에너지모델 설계 및 이의 냉·난방부하 산정)

  • Lee, Seung-No;Park, Se-Jun;Lee, In-Bok;Ha, Tae-Hwan;Kwon, Kyeong-Seok;Kim, Rack-Woo;Yeo, Uk-Hyeon;Lee, Sang-Yeon
    • Journal of Bio-Environment Control
    • /
    • v.25 no.2
    • /
    • pp.123-132
    • /
    • 2016
  • The importance of energy saving technology for managing greenhouse was recently highlighted. For practical use of energy in greenhouse, it is necessary to simulate energy flow precisely and estimate heating/cooling loads of greenhouse. So the main purpose of this study was to develope and to validate greenhouse energy model and to estimate annual/maximum energy loads using Building Energy Simulation (BES). Field experiments were carried out in a multi-span plastic-film greenhouse in Jeju Island ($33.2^{\circ}N$, $126.3^{\circ}E$) for 2 months. To develop energy model of the greenhouse, a set of sensors was used to measure the greenhouse microclimate such as air temperature, humidity, leaf temperature, solar radiation, carbon dioxide concentration and so on. Moreover, characteristic length of plant leaf, leaf area index and diffuse non-interceptance were utilized to calculate sensible and latent heat exchange of plant. The internal temperature of greenhouse was compared to validate the greenhouse energy model. Developed model provided a good estimation for the internal temperature throughout the experiments period (coefficients of determination > 0.85, index of agreement > 0.92). After the model validation, we used last 10 years weather data to calculate energy loads of greenhouse according to growth stage of greenhouse crop. The tendency of heating/cooling loads change was depends on external weather condition and optimal temperature for growing crops at each stage. In addition, maximum heating/cooling loads of reference greenhouse were estimated to 644,014 and $756,456kJ{\cdot}hr^{-1}$, respectively.

Relationship Analysis of Reference Evapotranspiration and Heating Load for Water-Energy-Food Nexus in Greenhouse (물-에너지-식량 넥서스 분석을 위한 시설재배지의 기준작물증발산량과 난방 에너지 부하 관계 분석)

  • Kim, Kwihoon;Yoon, Pureun;Lee, Yoonhee;Lee, Sang-Hyun;Hur, Seung-Oh;Choi, Jin-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.4
    • /
    • pp.23-32
    • /
    • 2019
  • Increasing crop production with the same amount of resources is essential for enhancing the economy in agriculture. The first prerequisite is to understand relationships between the resources. The concept of WEF (Water-Energy-Food) nexus analysis was first introduced in 2011, which helps to interpret inter-linkages among the resources and stakeholders. The objective of this study was to analyze energy-water nexus in greenhouse cultivation by estimating reference evapotranspiration and heating load. For the estimation, this study used the physical model to simulate the inside temperature of the agricultural greenhouse using heating, solar radiation, ventilated and transferred heat losses as input variables. For estimating reference evapotranspiration and heating load, Penman-Monteith equation and seasonal heating load equation with HDH (Heating Degree-Hour) was applied. For calibration and validation of simulated inside temperature, used were hourly data observed from 2011 to 2012 in multi-span greenhouse. Results of the simulation were evaluated using $R^2$, MAE and RMSE, which showed 0.75, 2.22, 3.08 for calibration and 0.71, 2.39, 3.35 for validation respectively. When minimum setting temperature was $12^{\circ}C$ from 2013 to 2017, mean values of evapotranspiration and heating load were 687 mm/year and 2,147 GJ/year. For $18^{\circ}C$, Mean values of evapotranspiration and heating load were 707 mm/year and 5,616 GJ/year. From the estimation, the relationship between water and heat energy was estimated as 1.0~2.6 GJ/ton. Though additional calibrations with different types of greenhouses are necessary, the results of this study imply that they are applicable when evaluating resource relationship in the greenhouse cultivation complex.

Effect of Air-earth Heat Exchange System on Growth of Leafy Lettuce in Greenhouse (온실내 잉여에너지 이용을 위한 지중 열교환 시스템의 상추 재배 효과)

  • Paek, Yee;Jeon, Jong-gil;Yun, Nam-kyu;Kang, Geum-Choon;Lee, Si-Young
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.4
    • /
    • pp.71-76
    • /
    • 2011
  • Earth to air heat exchangers made by iron, aluminium, copper and poly-ethylene pipe for single greenhouse heating were experimented and blowers. Earth to air heat exchanger was installed by pipelines in earth tube at 70cm depths and air blower was the heating capacity 3kW/h, As the result, Temperature difference due to temperature history of the inlet and outlet air on the various type in earth tube in greenhouse showed that air temperature at the various type in earth tube, comparison tube were make no difference respectively. Under the experimental condition, heat fluxes and heating load were showed 6,800Kcal/h, 19,699kcal/h generally yield of Lactuca Sativa cultured during days of sowing 90day in greenhouse using copper pipe was 170% incleased.