• Title/Summary/Keyword: Heating film

Search Result 507, Processing Time 0.029 seconds

Characteristics of Hot-Film Type Micro-Flowsensors Fabricated on SOI Membrane and Trench Structures (SOI 멤브레인과 트랜치 구조상에 제작된 발열저항체형 마이크로 유량세선의 특성)

  • 정귀상;김미목;남태철
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.8
    • /
    • pp.658-662
    • /
    • 2001
  • This paper describes on the fabrication and characteristics of hot-film type micro-flowsensors integrated with Pt-RTD(resistance thermometer device) and micro-heater on the SOI(Si-on-insulator) membrane and trench structures, in which MGO thin-film was used as medium layer in order to improve adhesion of Pt thin-film to SiO$_2$ layer. Output voltages increased due to increase of heat-loss from sensor to external. The output voltage was 250 nV at N$_2$ flow rate of 2000 sccm/min, heating power of 0.3 W. The response time($\tau$:63%) was about 42 msec when input flow was step-input. The results indicated that micro-flowsensors with the SOI membrane and trench structures have properties of a high-resolution and ow consume power.

  • PDF

Domestic Development of Vibrational Film Forming Machine and Die and Mold in the High Speed Production(I) - Single production forming machine - (고속 생산형 필름 진동판 성형기 및 금형 국산화 개발(I) - 단수 생산 진동판 성형기 -)

  • Kim, Jung-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.6
    • /
    • pp.9-15
    • /
    • 2012
  • Vibrational film has been more employed in ear-phones or small type of speakers along with a wide use of portable multi-media equipments such as MP3 and MP4. However, the current hand work production process of diaphragms is inefficient. In this study, a die-and-mold and a single production forming machine are developed, and they result in a multi-production forming machine. The multi-production forming machine consists primarily of a film feeding unit and an unwinding unit. A vacuum suction device provides the film feeding unit, while the unwinding unit is obtained using an appropriate damper. The advantage of the developed single production forming machine is shown according to a proper voice test.

Measurement of liquid film thickness distribution on sprayed surfaces (스프레이가 분사되는 표면에서의 액막 두께 분포 측정)

  • Tae Ho Kim;Myung Ho Kim;Hyoung Kyu Cho;Byoung Jae Kim
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.3
    • /
    • pp.33-38
    • /
    • 2023
  • Spray cooling is a method of cooling high-temperature heating elements by spraying droplets. Recently, spray cooling has been proposed for use in next-generation nuclear reactors. When droplets are sprayed onto the outer wall of a heat exchanger tube, a film boiling occurs on the outer wall. Over time, the outer wall temperature decreases, and a liquid film forms on the outer wall, and the heat exchanger outer wall is subsequently cooled by the liquid film. In this case, the liquid film thickness has a great influence on the heat removal performance. In this study, an experimental study was conducted to measure the liquid film thickness distribution in a droplet spray environment. For this purpose, a method using the electrical conductivity of the liquid was adopted.

A study on the simulation of water cooling process for the prediction of plate deformation due to line heating

  • Nomoto, Toshiharu;Jang, Chang-Doo;Ha, Yun-Sok;Lee, Hae-Woo;Ko, Dae-Eun
    • International Journal of Ocean System Engineering
    • /
    • v.1 no.1
    • /
    • pp.46-51
    • /
    • 2011
  • In a line heating process for hull forming, the phase of the steel transforms from austenite to martensite, bainite, ferrite, or pearlite depending on the actual speed of cooling following line heating. In order to simulate the water cooling process widely used in shipyards, a heat transfer analysis on the effects of impinging water jet, film boiling, and radiation was performed. From the above simulation it was possible to obtain the actual speed of cooling and volume percentage of each phase in the inherent strain region of a line heated steel plate. Based on the material properties calculated from the volume percentage of each phase, it should be possible to predict the plate deformations due to line heating with better precision. Compared to the line heating experimental results, the simulated water cooling process method was verified to improve the predictability of the plate deformation due to line heating.

Ultrasonic ACF Bonding Technique for Mounting LCD Driver ICs (LCD 구동 IC의 실장을 위한 초음파 ACF접합 기술)

  • Joung, Sang-Won;Yun, Won-Soo;Kim, Kyung-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.6
    • /
    • pp.543-547
    • /
    • 2008
  • In the paper, we develop the ultrasonic bonding technique for LCD driver chips having small size and high pin-density. In general, the mounting technology for LCD driver ICs is a thermo-compression method utilizing the ACF (An-isotropic Conductive Film). The major drawback of the conventional approach is the long process time. It will be shown that the conventional ACF method based on thermo-compression can be remarkably enhanced by employing the ultrasonic bonding technique in terms of bonding time. The proposed approach is to apply the ultrasonic energy together with the thermo-compression methodology for the ACF bonding process. To this end, we design a bonding head that enables pre-heating, pressure and ultrasonic excitation. Through the bonding experiments mainly with LCD driver ICs, we present the procedures to select the best combination of process parameters with analysis. We investigate the effects of bonding pressure, bonding time, pre-heating temperature before bonding, and the power level of ultrasonic energy. The addition of ultrasonic excitation to the thermo-compression method reduces the pre-heating temperature and the bonding process time while keeping the quality bonding between the LCD pad and the driver IC. The proposed concept will be verified and demonstrated with experimental results.

The Effect of Heat Curing Methods on the Temperature History of the Fly Ash Concrete Subjected to Extremely Low Temperature (복합보온양생 방법이 극저온 조건하 플라이애시 치환 콘크리트의 온도이력에 미치는 영향)

  • Han, Min-Cheol;Son, Ho-Jung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.3
    • /
    • pp.85-90
    • /
    • 2012
  • In this study, temperature profile of the fly ash concrete were studied in accordance with the change of heating curing method combination for the slab concrete in order to develop efficient protection method of the concrete subjected to $-20^{\circ}C$. The slab concretes with the size of $1200mm{\times}600mm{\times}200mm$ were fabricated with W/B of 50% and exposed to $-20^{\circ}C$ for 7 days. Five different combinations of heat curing methods were applied to the slab concrete specimen; two combinations of heat supplying by electrical heater and surface heat insulation material such as polyethylene film and quadrupled layer bubble sheet based on heat enclosure installment; three combinations of heating coil embedment and surface heat insulation materials such as polyethylene film, sawdust and quadrupled layer bubble sheet based on heat enclosure installment. Test results showed that by applying both heating coil and bubble sheet and heat enclosure, the concrete exposed to $-20^{\circ}C$ can be effectively protected from early-age frost damage.

  • PDF

Constructability of a Waterproofing Sheet Joint Combining an Aluminum Thin-film and Viscosity Layer Using a High-frequency Inductive Heating Apparatus (고주파 유도가열 장치를 이용한 알루미늄 박판 점착 복합방수시트 조인트부의 시공성)

  • Chang, Sang Mook;Kim, Yun Ho;Choi, Sung Min
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.2
    • /
    • pp.163-169
    • /
    • 2014
  • Engineers in the construction field have been using bonded waterproofing sheets in an attempt to resolve the imbalance in the quality, the risk of fire, safety of workers, and environmental pollution, as well as to eliminate separate use of organic adhesives on the surface of concrete. Recently, self-laminated waterproofing sheets have been developed. The purpose of this research is to find an appropriate processing speed according to the changes in physical properties, and visual observation of the waterproofing sheets laminated by the aluminum thin-film and viscosity layer that can be attached through self-adhesiveness on the surface of concrete and waterproofing sheets. Therefore, this research is conducted using a physical performance test. Based on the result of the test, when the high-frequency inductive heating apparatus was used, an improved adhesion and bonding stability effect were confirmed after the anti-hydrostatic pressure and bond strength in the temperature condition, and the surface observation in the processing speed condition.

The Effect of Soil Warming on the Greenhouse Heating Load (지중가온이 온실의 난방부하에 미치는 영향)

  • Nam, Sang-Woon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.5
    • /
    • pp.51-60
    • /
    • 2006
  • In order to examine the heat transfer characteristic of a soil warming system and effects of soil warming on the greenhouse heating load, control experiments were performed in two greenhouses covered with double polyethylene film. One treated the soil warming with an electric heat wire and the other treated a control. Inside and outside air temperature, soil temperature and heat flux, and heating energy consumption were measured under the set point of heating temperature of $5,\;10,\;15,\;and\;20^{\circ}C$, respectively. Soil temperatures in a soil warming treatment were observed $4.1\;to\;4.9^{\circ}C$ higher than a control. Heating energy consumptions decreased by 14.6 to 30.8% in a soil warming treatment. As the set point of heating temperature became lower, the rate of decrease in the heating energy consumptions increased. The percentage of soil heat flux in total heating load was -49.4 to 24.4% and as the set point of heating temperature became higher, the percentage increased. When the set point of heating temperature was low in a soil warming treatment, the soil heat flux load was minus value and it had an effect on reducing the heating load. Soil heat flux loads showed in proportion to the air temperature difference between the inside and outside of greenhouse but they showed big difference according to the soil warming treatment. So new model for estimation of the soil heat flux load should be introduced. Convective heat transfer coefficients were in proportion to the 1/3 power of temperature difference between the soil surface and the inside air. They were $3.41\;to\;12.42\;W/m^{2}^{\circ}C$ in their temperature difference of $0\;to\;10^{\circ}C$. Radiative heat loss from soil surface in greenhouse was about 66 to 130% of total heating load. To cut the radiation loss by the use of thermal curtains must be able to contribute for the energy saving in greenhouse.

The development of ultra high-speed metal film deposition system and process technology for a heat sink in digital devices (디지털 소자용 방열판 제작을 위한 초고속 금속필름 증착장치 및 공정기술 개발)

  • Yoon, Hyo Eun;Ahn, Seong Joon;Han, Dong Hwan;Ahn, Seungjoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.7
    • /
    • pp.17-25
    • /
    • 2017
  • To resolve the problem of the temperature rise in LED or OLED lighting, until now a thick metal film has been used as a heat-sink. Conventionally, this thick metal film is made by the electroplating method and used as the heat-dissipating plate of the electronic devices. However, nowadays there is increasing need for a Cu metal film with a thickness of several hundred micrometers that can be formed by the dry deposition method. In this work, we designed and fabricated a Cu film deposition system where the heating element is separated from the ceramic crucible, which makes ultra-rapid deposition possible by preventing heat loss. In addition, the resulting induction heating also contributes to the high deposition rate. By tuning the various parameters, we obtained a $100-{\mu}m$ thick Cu film whose heat conductivity is high and whose thickness uniformity is better than 2%, while the deposition rate is as high as $1000{\AA}/s$.

Direct-Aluminum-Heating-Induced Crystallization of Amorphous Silicon Thin Film (비정질 실리콘 박막의 알루미늄 직접 가열 유도 결정화 공정)

  • Park, Ji-Young;Lee, Dae-Geon;Moon, Seung-Jae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.10
    • /
    • pp.1019-1023
    • /
    • 2012
  • In this research, a novel direct-aluminum-heating-induced crystallization method was developed for the purpose of application to solar cells. By applying a constant current of 3 A to an aluminum thin film, a 200-nm-thick amorphous silicon (a-Si) thin film with a size of $1cm{\times}1cm$ can be crystallized into a polycrystalline silicon (poly-Si) thin film within a few tens of seconds. The Raman spectrum analysis shows a peak of 520 $cm^{-1}$, which verifies the presence of poly-Si. After removing the aluminum layer, the poly-Si thin film was found to be porous. SIMS analysis showed that the porous poly-Si thin film was heavily p-doped with a doping concentration of $10^{21}cm^{-3}$. Thermal imaging shows that the crystallization from a-Si to poly-Si occurred at a temperature of around 820 K.