• 제목/요약/키워드: Heating element

검색결과 539건 처리시간 0.025초

SMC 금형의 가열채널레이아웃 평가기술에 관한 연구 (A Study of Evaluation Technology for Heating Channel Layout in SMC Molds)

  • 이성희;고영배;이종훈
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.580-584
    • /
    • 2004
  • In the present study, an evaluation technology for heating channel layout was investigated in SMC molding system design. Conventional design rules of cooling channel in injection molding process were applied to the present work. Finite element thermal analysis with ANSYSTM was performed to evaluate the temperature distribution of mold surface. SMC mold was manufactured to test the effect of a proposed heating channel layout system on the temperature distribution of mold surface and infrared camera was applied to a measurement of temperature. It was shown that infrared camera application was possible in a measurement of temperature distribution on mold surface.

  • PDF

알칼리 활성 황토 결합재 제조를 위한 프로토타입의 마이크로파 가열 시스템 개발 (Development of Prototype System for Microwave Heating in a Manufacture Process of Alkali Activted Hwangtoh Binder)

  • 김백중;로양;이종구;강경인
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2011년도 추계 학술논문 발표대회
    • /
    • pp.25-26
    • /
    • 2011
  • The objective of this study is to develop the prototype system for microwave heating in a manufacture process of alkali activated Hwangtoh binder as replacement materials for the cement in concrete. In order to achieve this, four research phases are carried out as follows: 1) establishment of a system concept 2) deduction of a system element 3) design of the entire system 4) making of the prototype system for microwave heating.

  • PDF

Numerical studies of the effect of residual imperfection on the mechanical behavior of heat-corrected steel plates, and analysis of a further repair method

  • Chun, Pang-Jo;Inoue, Junya
    • Steel and Composite Structures
    • /
    • 제9권3호
    • /
    • pp.209-221
    • /
    • 2009
  • Heating correction, through heating and flattening a structure with a pressing machine, is the in-situ method used to repair buckled steel structures. The primary purpose of this investigation is to develop an FEM model which can predict the mechanical response of heat-corrected plates accurately. Our model clarifies several unsolved problems. In previous research, the location of the imperfection was limited to the center of the specimen although the mechanical behavior is strongly affected by the location of the imperfection. Our research clarifies the relationship between the location of the imperfection and the mechanical behavior. In addition, we propose further reinforcement methods and validate their effectiveness. Our research concludes that the strength of a buckled specimen can be recovered by heating correction and the use of an adequate stiffener.

광섬유 생산공정용 퍼니스 내의 모재 가열 및 유리섬유 인출에 대한 열전달 해석 (HEAT TRANSFER ANALYSIS ON THE PREFORM HEATING AND THE GLASS FIBER DRAWING IN A GRAPHITE FURNACE FOR OPTICAL FIBER MANUFACTURING PROCESS)

  • 김경진;김동주;곽호상
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.88-91
    • /
    • 2011
  • Glass fiber drawing from a silica preform is one of the most important processes in optical fiber manufacturing. High purify silica preform of cylindrical shape is fed into the graphite furnace, and then a very thin glass fiber of 125 micron diameter is drawn from the softened and heated preform. A computational analysis is performed to investigate the heat transfer characteristics of preform heating and the glass fiber drawing in the furnace. In addition to the dominant radiative heating of preform by the heating element in the furnace, present analysis also includes the convective heat transport by the gas flowing around the preform that experiences neck-dawn profile and the freshly drawn glass fiber at high fiber drawing speed. The computational results present the effects of gas flow on the temperature of preform and glass fiber as well as the neck-down profile of preform.

  • PDF

선상가열(Line Heating)에 의한 평판가공 Simulator 연구 (A Two-Dimensional Simulator for Plate Forming by Line Heating)

  • 신종계
    • 대한조선학회논문집
    • /
    • 제29권1호
    • /
    • pp.191-200
    • /
    • 1992
  • 선체 등의 곡면 가공에 사용되고 있는 Line Heating(선열가공)법의 역학적 이해를 통하여 3차원 열탄소성 변형을 simulation하는 model을 유도하고 유한요소 프로그램을 이용하여 model의 효용성을 검증하였다. 이미 제안된 다른 model이 결과를 주지 못하는 온도분포를 채택하여 본 model이 좋은 결과를 주는 것을 확인하였다.

  • PDF

유도가열 인덕터의 특성해석 (Characteristic Analysis of Induction Heating Inductor)

  • 장석명;김송집;차상도;박찬일;박희창
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 B
    • /
    • pp.594-596
    • /
    • 2000
  • Induction Heating is utilized in a large and ever-increasing number of application. The most prominent of these are billet heating, heating treating. metal melting. In this paper, we are modeling of the inductor and calculating of the circuit parameters is described. Analyzed by finite element method and then Inductor's characteristic analysis was studied and perform the test of temperature distribution.

  • PDF

Mg 온간성형을 위한 십자형상 금형의 가열/냉각 채널 설계 (Heating and Cooling Channel Design of Cross-Shaped Die for Warm Forming of Magnesium Alloy Sheet)

  • 최선철;고동선;김헌영;김형종;홍석무;유수열;신용승
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 춘계학술대회 논문집
    • /
    • pp.370-373
    • /
    • 2008
  • It is known that the temperatures of die, punch, holder and punch pad need to be kept different to get better formability in Mg sheet forming processes. Heating and cooling channels are usually equipped in each tool to assign different temperature. This study focused on the optimal design of the heating and cooling channels for a cross-shaped deep drawing die set. While the die and blankholder were heated to and kept at $250^{\circ}C$ by using heat cartridges, the punch and punch pad were kept at much lower temperature than that of the die and blankholder by water circulating through cooling channels. All the approaches were done by numerical analyses, aiming to maximize the cup height and to minimize the punch corner radius without any failure.

  • PDF

Polypyrrole-Coated Woven Fabric as a Flexible Surface-Heating Element

  • Lee, Jun-Young;Park, Dong-Won;Lim, Jeong-Ok
    • Macromolecular Research
    • /
    • 제11권6호
    • /
    • pp.481-487
    • /
    • 2003
  • Polypyrrole (PPy) was coated sequentially by chemical and electrochemical methods on a woven fabric, giving rise to a fabric having high electrical conductivity. We investigated the effects of the preparation conditions on the various properties of the resulting fabric. The PPy-coated fabric with optimum properties was obtained when it was prepared sequentially by chemical polymerization at the elevated temperature of 100$^{\circ}C$ under a pressure of 0.9 kgf/$\textrm{cm}^2$ and then electrochemical polymerization with a 3.06 mA/$\textrm{cm}^2$ current density at 25 $^{\circ}C$ for 2 hrs with the separator plate. The surface resistivity of the resulting fabric was as low as 5 Ω/$\square$ .The PPy-coated fabric prepared under the optimum conditions showed practically applicable heat generating property. When electrical power was supplied to the fabric using a commercial battery for a mobile phone (3.6 V, LGLl-AHM), the temperature of the fabric increased very quickly from room temperature to ca. 55 $^{\circ}C$ within 2 min and was maintained for ca. 80 min at that temperature. The heat generating property of the fabric was extremely stable, exhibiting similar behavior over 10 repeated cycles. Therefore, we suggest that the PPy-coated fabric in this study may be practically useful for many applications, including flexible, portable surface-heating elements for medical or other applications.

마이크로웨이브와 고온발열체를 이용한 연속식 공정의 유류오염토양 처리에 관한 연구 (A Study on Treatment of a Contaminated Soil by Oil using Continuous System of High Temperature Heating Element and Microwave)

  • 하상안;유미영
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제17권1호
    • /
    • pp.8-12
    • /
    • 2012
  • This study is maintains the condition of high temperature (above $600^{\circ}C$) within a short time using on microwave and high temperature heating elements. And removal characteristics according to changes in soil moisture, microwave power and temperature through the decomposition of the contaminated soil by oil. The difficulty resolvability material was sort of lubricating oil having long carbocyclic (C18-C50) and TPH removal rate reached 85.2% at 6 kW and $700^{\circ}C$ and thus the contaminant was removed 1,788 mg/kg within a process time of 40 minutes. In the case of light oil, gasoline contaminated soil, the removal amount showed 567 mg/kg and the treatment rate reached 98.4% at 6 kW, $500^{\circ}C$ and 20 minute. In the case of non-resolvability reached TPH concentrations on 2,000 mg/kg of worrisome level of soil contamination in the 3 zones at 6 kW, $700^{\circ}C$ and 30 minute. At the time, showed up processing costs 8,173 won per ton.

사출법으로 제조된 자동차 내장부품의 표면특성 개선 연구 (Improved Surface Characteristics of Automotive Interior Parts Fabricated by Injection Molding Method)

  • 최동혁;황현태;손동일;김대일
    • 한국표면공학회지
    • /
    • 제52권1호
    • /
    • pp.43-51
    • /
    • 2019
  • The environmental pollution which is global warming and abnormal climate is caused by increasing population and activated economics. To reduce environmental pollution, we have being efforts into reducing $CO_2$ emission and use of energy, resources. Especially, for the sake of light weight and fuel efficiency of automotive industry, many countries have defined the restrict environmental regulation which stipulate high magnitude of reducing $CO_2$ emission. In this study, we have predicted the problem of Mu-cell injection molding through the finite element analysis as a function of temperature controlled by Joule heating or in terms of mold temperature. From the result of finite element analysis, we have determined the optimized process and made the injection mold included electric current heating system with Mu-cell manufacturing. Lastly, we analyzed the surface characteristics of the injection products with mold temperature.