• Title/Summary/Keyword: Heating condition

Search Result 1,308, Processing Time 0.029 seconds

A Study on the Mean Skin Temperature of the Man Who Stay in the Room (재실자의 평균피부온(平均皮膚溫)에 관한 연구)

  • Choi, Young-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.3 no.4
    • /
    • pp.307-317
    • /
    • 2000
  • The purpose of this study is to form a calculation formula of the mean skin temperature on the human body in a heated room by the use of floor heating system. Korean traditional floor heating system is a long way from being defunct. The floor heating systems based on hot water have been coming into wide use mainly in the apartment house. However, it is considered that the design process and evaluation method for the floor heating systems in the standpoint of human being are not established so far. In the floor heating systems, air temperature as well as floor temperature should be considered as physical factors which affect the sensation of human body. Furthermore, extremely few studies have been performed on the sitting with legs crossed posture sedentary which is the typical dwelling life style of residents from the ancient times in Korea, while a large number of studies on the influence of the floor heating systems on the human body in standing and sitting on a chair sedentary have been carried out. Especially, it is essential to elucidate how mean skin temperature on the human body is affected by thermal conduction in the contact area between the sitting with legs crossed posture sedentary human body and floor including thermal radiation due to the combination of air temperature and floor temperature, but the studies dealt with such issues have hardly been performed. Based on the above statements, the influence of the environment condition due to the combination of air temperature and floor temperature is discussed in the present investigation through theoretical of mean skin temperature on the human body in the floor heating systems.

  • PDF

The Development of the Climatic Design Tool for Energy Efficient Building Design (태양열 축열조가 없는 변유량 제어 방식의 지역난방용 태양열시스템 실증시험연구)

  • Baek, Nam-Choon;Shin, U-Chul;Lee, Jin-Kook;Yoon, Eung-Sang;Yoon, Suk-Man
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.5
    • /
    • pp.21-27
    • /
    • 2008
  • In this study, the design of the solar heating system for district heating as well as it's operating characteristics and the performance analysis was carried out. This solar district heating system was composed of two different types of solar collector circuit, flat plate and vacuum tube solar collector, in a system. This system supply constant temperature of hot water without solar buffer tank. For this, the proportional(variable flow rate) control was used. The experimental facility for this study was used the Bundang district solar heating system which was installed in the end of 2006. The operating characteristics and behaviour of each collector circuits are investigated especially for the system design and control. The yearly solar thermal efficiency is 47.5% on the basis of aperture area and 39.8% on the basis of gross area of collector. As a result this solar heating system without solar buffer tank and with proportional controller was testified a very effective and simplified system for district heating. It varied especially depend on the weather condition like as solar radiation and ambient temperature.

The Effect of Temperature on the Nano-scale Adhesion and Friction Behaviors of Thermoplastic Polymer Films (열가소성 폴리머 필름의 나노 응착 및 마찰 거동에 대한 온도의 영향)

  • Kim, Kwang-Seop;Ando, Yasuhisa;Kim, Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.23 no.6
    • /
    • pp.288-297
    • /
    • 2007
  • Adhesion and friction tests were carried out in order to investigate the effect of temperature on the tribological characteristics of poly (methylmethacrylate) (PMMA) film using AFM. The pull-off and friction forces on the PMMA film were measured under a high vacuum condition (below $1{\times}10^{-4}$ Pa) as the temperature of the PMMA film was increased from 300 K to 420 K (heating) and decreased to 300K (cooling). Friction tests were also conducted in both high vacuum and air conditions at room temperature. When the temperature was 420 K, which is 25 K higher than the glass transition temperature $(T_g)$ of PMMA, the PMMA film surface became deformable. Subsequently, the pull-off force was proportional to the maximum applied load during the pull-off force measurement. In contrast, when the temperature was under 395 K, the pull-off force showed no correlation to the maximum applied load. The friction force began to increase when the temperature rose above 370 K, which is 25 K lower than the $T_g$ of PMMA, and rapidly increased at 420 K. Decrease of the PMMA film stiffness and plastic deformation of the PMMA film were observed at 420 K in force-displacement curves. After the heating to 420 K, the fiction coefficient was measured under the air condition at room temperature and was found to be lower than that measured before the heating. Additionally, the RMS roughness increased as a result of the heating.

Annealing Experiments of Albite Using Optical Microscope Heating Stage (광학현미경 가열실험대를 이용한 알바이트의 등온가열 실험 연구)

  • Park Byung-Kyu;Kim Yong-Jun;Kim Youn-Joong
    • Journal of the Mineralogical Society of Korea
    • /
    • v.18 no.4 s.46
    • /
    • pp.289-299
    • /
    • 2005
  • Annealing experiments on albite powders, thin sections, and TEM specimens have been performed utilizing an optical microscope heating stage. Sample orientations were determined by optical microscope and XRD, and then confirmed by TEM diffraction patterns. Partial melting of samples occurred at $1030^{\circ}C$-l2 hr for powder, but at $1060^{\circ}C$-12 hr for TEM specimen. It is difficult to get TEM images of albite microstructures above this temperature due to thickening and the amorphous phase of the melted part. Correlative studies between optical microscopy and TEM indicated that the $1050^{\circ}C$-12 hr annealing in ambient condition was most adequate to observe tweed microstructures in albite through TEM. In situ TEM heating experiments for direct observation of tweed microstructures in albite may require annealing at slightly higher temperatures than $1050^{\circ}C$ considering the high vacuum condition inside TEM.

Study on Friction Welding of SUS431 and SCM21 for External Shaft of Ship (선외기 샤프트용 재료의 마찰용접에 관한 연구)

  • 오세규;이종환;배명주;오명석
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.17 no.4
    • /
    • pp.38-48
    • /
    • 1993
  • A study on friction welding of stainless steel bar(SUS431) to chrome molybdenum steel bar(SCM21) was accomplished experimentally through analysis for relations among friction welding conditions, tension test, hardness test, microstructure test and acoustic emission test. The results obtained are summarized as follows ; 1. Through friction welding of SUS431 bar to SCM21 bar, the optimum welding condition by considering on strength and toughness was found to be the range of heating time of 3-5 sec when the number of rotating speed of 2000rpm, heating pressure of 10kg/$mm^2$, and upsetting time of 4 sec. 2. Quantitative ralationship was identified between heating time($T_1$, sec) and tensile strength (${\sigma},\;kgf/mm^2$) of the friction welded joint and the relation equation is $\sigma$=52.62$T_1{^{0.06}}$. 3. Through AE test, quantitative relationship was confirmed between heating time($T_1$, sec) and total AE(N, counts) during welding, and the relation is computed as follows ; N=30413.6$e^{0.06T1}$. 4. It was confirmed that the quantitative ralationship exists between the tensile strength of the welded joints and AE cumulative counts. And the relation is computed as the following ; ${\sigma}$=16.37(ln N)- 116.4. 5. When ONZ=36500-41500 counts by $OT_1Z$=3~5sec, it was identified by experiment that the range of welded joint tensile strength is 55.6-57.7kgf/$mm^2$/ whose joint efficiency is more than 100%, and it was experimentally confirmed that the real-time nondestructive quality(strength) evaluation for the friction welded joints could be possible by acoustic emission technique.

  • PDF

Oxidative Stability of Tallow Heated by Different Frying Conditions (튀김조건에 따른 가열 우지의 산화안정성)

  • 장영상;양주홍
    • Food Science and Preservation
    • /
    • v.8 no.3
    • /
    • pp.331-337
    • /
    • 2001
  • The oxidative stability of tallow heated was studied by different frying condition (temperature 130, 150, and 180$^{\circ}C$;heating time, each 10hours per day, total 240hrs). Changes of physicochemical parameters such as acid value, peroxide value, iodine value, dielectric constant, content of polar components and polymer, refractive index, smoke point, viscosity and color changes in tallow heated were also measured. Acid value, dielectric constant, refractive index, viscosity, and content of polar component and polymer increased as the tallow was heated longer, whereas iodine value and smoke point decreased and peroxide value was increased and decreased repeatedly. These parameters changed to a greater extent as the heating temperature went up. The color became darkened with the increase of red and yellow values during heating. The decree of coloration was proportional to heating temperature.

  • PDF

Production of Foamed Glass by Induction Heating Method (인덕션 가열법을 이용한 발포유리제조)

  • Sun, Hongshuai;Yoo, In-Sang
    • Applied Chemistry for Engineering
    • /
    • v.28 no.5
    • /
    • pp.513-520
    • /
    • 2017
  • The application possibility of an alternative new method with low energy consumption was studied for the eco-friendly fabrication of foamed glasses from waste glasses. As a result, fabricating temperature can be reduced under $300^{\circ}C$ without using various expensive inorganic oxidants. The foamed glass can be fabricated at a proper mixing ratio of the waste glass powder, water glass, little surfactant and bubble stabilizer by induction heating method. In the experimental range, the assured optimal condition is 4 min heating on the induction machine with a steel-container ($100mm{\times}100mm{\times}20mm$) and followed by evaporating and drying process for 11 min with 110 g of glass powder, 80 g of water glass, 3 g of surfactant and 0.2 g of bubble stabilizer. When the foamed glass was fabricated at the optimal condition, the density of the glass was $0.85g/cm^3$ and the heat conduction was $0.052W/h{\cdot}K$. In addition, the compressive strength of the glass was above $50kg/cm^2$.