• 제목/요약/키워드: Heating and Cooling Energy

검색결과 940건 처리시간 0.037초

기후 온난화의 영향에 의한 건물의 냉.난방에너지 수요량 예측 (The Demand Expectation of Heating & Cooling Energy in Buildings According to Climate Warming)

  • 김지혜;서승직
    • 한국태양에너지학회 논문집
    • /
    • 제26권3호
    • /
    • pp.119-125
    • /
    • 2006
  • The impacts of climate changes on building energy demand were investigated by means of the degree-days method. Future trends for the 21st century was assessed based on climate change scenarios with 7 global climate models(GCMs). We constructed hourly weather data from monthly temperatures by Trnsys 16. A procedure to estimate heating degree-days (HDD) and cooling degree-days (CDD) from monthly temperature data was developed and applied to three scenarios for Inchon. In the period 1995-2080, HDD would fall by up to 70%. A significant increase in cooling energy demand was found to occur between 1995-2004(70% based on CDD). During 1995-2080, CDD would Increase by up to 120%. Our analysis shows widely varying shifts in future energy demand depending on season. Heating costs in winter will significantly decrease whereas more expensive electrical cooling energy will be needed.

국내 건물 단열기준에 따른 냉.난방 부하 분석 및 최적 단열기준에 관한 고찰 (An Analysis of Thermal Loads Depending on Korea Building Insulation Standard and the Optimum Insulation Standard)

  • 서성모;박진철;이언구
    • 한국태양에너지학회 논문집
    • /
    • 제31권5호
    • /
    • pp.146-155
    • /
    • 2011
  • Sustainable building is getting more and more important topic in 21C. Following this trend, building energy saving standard has been reinforced in Korea. Especially, insulation standards are revised continuously after1979. This study aims to evaluate the correlation between the revised insulation standards and heating and cooling loads of a residential building. This study shows that the standard of insulation is more related with heating load than cooling load, and cooling load is more related with other sources such as glass types and solar incidence through windows. In case of highly-insulated building such Passive Houses or Zero Energy Houses, the cooling load should also be considered as important as heating load when revising the building energy saving regulations in the future.

에너지절약형 주택에서의 단열차양 적용과 제어방법에 따른 냉난방부하 분석 (An Analysis of Heating and Cooling Loads by Insulated Shades and Control Method in an Energy Saving Apartment)

  • 박선효;권경우;손장열
    • 설비공학논문집
    • /
    • 제22권6호
    • /
    • pp.392-397
    • /
    • 2010
  • Energy loss from windows accounts for large scores of heating and cooling loads also in energy saving apartments that is reduced over 30% of total energy consumption. Movable reflective insulations, insulation shutters, blinds, insulated shades are used to reduce energy loads from windows. In this study, energy saving performance of insulated shades was simulated by control methods. According to installation of insulated shades, heating loads were decreased about 10.5~11.3%, and cooling loads are decreased about 29.1~38.3% on an energy saving apartment. The heating peak load was reduced about 9.5% by insulated shades and the cooling peak load was reduced about 25.7~31.5%. In the case of insulated shades with automatic control system, simple time schedule control system would be more efficient than outdoor detection control system that should use several sensors.

미활용에너지기술 중장기 Road Map (A Road Map of the Unutilized Energy Technology)

  • 이영수;박준택;백영진;신광호
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.203-208
    • /
    • 2006
  • The unutilized energy in urban area is commercially and environmentally worth recycling since it can be used as a good energy resource for the heating and cooling supply. Therefore, once heating and cooling demands are near the available unutilized energy resources, a high performance district heating and cooling can be realized by the network of unutilized energy technology. In relation to this circumstance, a road map of the unutilized energy technology is presented in this study.

  • PDF

콤팩트형 태양열/지열히트펌프 하이브리드 냉난방 및 급탕 시스템 개발 및 성능분석 (The Development and Performance Analysis of Compact Type Solar Thermal/Ground Coupled Heat Pump Hybrid System for Heating, Cooling and Hot water)

  • 백남춘;정선영;윤응상;이경호
    • 한국태양에너지학회 논문집
    • /
    • 제32권5호
    • /
    • pp.59-67
    • /
    • 2012
  • In this study,the compact type solar thermal and ground coupled heat pump hybrid system for space heating/cooling and hot water supply has been developed. This hybrid system was installed in Zero Energy Solar House(ZeSH) in KIER for the demonstration. The thermal performance and operational characteristics of this hybrid system were analysed especially. The results are as follows. (1) This hybrid system was designed in order to address the existing disadvantages of solar thermal/ground coupled heat pump system. For this design, all parts except solar collector and ground coupled heat pump were integrated into a single product in a factory. The compact type unit includes two buffer tanks, an expansion tank, pumps, valves, a controller, etc. This system has an advantage of easy installation with simple plumbing work even in narrow space. (2) The thermal charging and discharging time of the buffer tanks and its characteristics by ground coupled heat pump, and heat pump COP according to geo-source temperature and buffer storage temperature have been studied. This system was found to meet well to the heat load without any other auxiliary heating equipment. (3) The operating hours of the ground coupled heat pump as a backup device of solar thermal can be reduced significantly by using solar heat. It was also found that the minimum heating water supply setting temperature and maximum cooling water supply setting temperature make an influence on the heat pump COP. The lower heating water and the higher cooling water temperature, the higher COP. In this respect, the hybrid system's performance can be improved in ZeSH than conventional house.

Hybrid thermal seasonal storage and solar assisted geothermal heat pump systems for greenhouses

  • Ataei, Abtin;Hemmatabady, Hoofar;Nobakht, Seyed Yahya
    • Advances in Energy Research
    • /
    • 제4권1호
    • /
    • pp.87-106
    • /
    • 2016
  • In this research, optimum design of the combined solar collector, geothermal heat pump and thermal seasonal storage system for heating and cooling a sample greenhouse is studied. In order to optimize the system from technical point of view some new control strategies and functions resulting from important TRNSYS output diagrams are presented. Temperatures of ground, rock bed storage, outlet ground heat exchanger fluid and entering fluid to the evaporator specify our strategies. Optimal heat storage is done with maximum efficiency and minimum loss. Mean seasonal heating and cooling COPs of 4.92 and 7.14 are achieved in series mode as there is no need to start the heat pump sometimes. Furthermore, optimal parallel operation of the storage and the heat pump is studied by applying the same control strategies. Although the aforementioned system has higher mean seasonal heating and cooling COPs (4.96 and 7.18 respectively) and lower initial cost, it requires higher amounts of auxiliary energy either. Soil temperature around ground heat exchanger will also increase up to $1.5^{\circ}C$ after 2 years of operation as a result of seasonal storage. At the end, the optimum combined system is chosen by trade-off between technical and economic issues.

빌딩 구조체 활용 지열원 열펌프 시스템의 냉난방성능 특성 (Heating and Cooling Performance Characteristics of Ground Source Heat Pump System Utilizing Building Structures as Heat Source and Sink)

  • 김남태;최종민;손병후;백성권;이동철;양희정
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.143.2-143.2
    • /
    • 2011
  • Energy foundations and other thermo-active ground structure, energy wells, energy slab, and pavement heating and cooling represent an innovative technology that contributes to environmental protection and provides substantial long-term cost savings and minimized maintenance. This paper focuses on earth-contact concrete elements that are already required for structural reasons, but which simultaneously work as heat exchangers. Pipes, energy slabs, filled with a heat carrier fluid are installed under conventional structural elements, forming the primary circuit of a geothermal energy system. The natural ground temperature is used as a heat source in winter and heat sink in summer season. The system represented very high heating and cooling performance due to the stability of EWT from energy slab. Maximum heat pump unit COP and system COP were 4.9 and 4.3.

  • PDF

블라인드 내장형 창호시스템의 에너지 성능 및 경제성 평가에 관한 연구 (Study on Energy Performance And Economic Evaluation of Windows System with Built-in Type Blinds)

  • 조원화;임남기
    • 한국건축시공학회지
    • /
    • 제10권2호
    • /
    • pp.97-104
    • /
    • 2010
  • 본 연구에서는 전열해석 프로그램인 피지벨(PHYSIBEL)을 사용하여 블라인드 내장형 창호시스템의 일사차단성능 및 단열성능에 따른 에너지 성능을 평가하였다. 피지벨 해석시 창호별 구성 재료의 열적특성과 해석조건을 결정하기 위해서 Mock-up시험을 실시하였으며, 컴퓨터 시뮬레이션을 통한 결과를 바탕으로 공동주택 기준층 1개 세대(33평형)를 대상으로 연간에너지 소비특성, 연간전열량, 연간 냉난방 비용을 분석하였다. 실험결과, 연간전열량은 일반 창호시스템 대비 블라인드 내장형 창호시스템에서 블라인드를 올린 경우 냉방시 10%, 난방시 11% 절감할 수 있으며, 블라인드를 내린 경우 냉방시 25%, 난방시 30%정도를 절감할 수 있는 것으로 나타났다. 블라인드 내장형 창호시스템의 냉 난방 부하 절감량은 일반 창호시스템에 비해 냉방시 283.3KWh, 난방시 76.3KWh 로 냉 난방 에너지 절감효과는 단위세대당 359.6KWh 절감시킬 수 있는 것으로 나타났으며, 이것은 단위세대당 연간 에너지원단위(TOE) 약 0.078toe, 이산화탄소톤($tCO_2$) $0.16tCO_2$을 절감시킬 수 있어 온실가스 저감에도 유리할 것으로 판단된다. 또한, 블라인드 내장형 창호시스템의 냉 난방비용 절감액은 일반창호시스템과 비교하여 연간 냉방비용 10만원, 난방비용 5만원으로 연간 냉 난방 비용을 약 15만원 정도 절감시킬 수 있는 것으로 나타났다.

태양열 냉.난방시스템의 열성능 분석 (Analysis of Thermal Performance of a Solar Heating & Cooling System)

  • 곽희열;신우철
    • 한국태양에너지학회 논문집
    • /
    • 제28권4호
    • /
    • pp.43-49
    • /
    • 2008
  • The purpose of this study is to present the simulation results and an overview of the performance assessment of a solar heating & cooling system by means of the $200m^2$ evacuated tube solar collector. The simulation was carried out using the thermal simulation code TRNSYS with new model of a single-effect LiBr/$H_{2}O$ absorption chiller developed by this study. The calculation was performed for yearly long-term thermal performance and for two design factors: the solar hot water storage tank and the cold water storage tank. As a result, it was anticipated that the yearly mean system efficiency is 46.7% and the solar fraction for the heating, cooling and hot water supply are about 84.4 %, 41.7% and 72.4%, respectively.

OEMGD 알고리즘을 이용한 건물 냉난방용 최적 에너지 믹스 모델에 관한 연구 - 지열히트펌프와 지역냉난방 시스템을 중심으로 (A Study on the Optimal Energy Mix Model in Buildings with OEMGD Algorithm Focusing on Ground Source Heat Pump and District Heating & Cooling System)

  • 이기창;홍준희;이규건
    • 한국지역사회생활과학회지
    • /
    • 제27권2호
    • /
    • pp.281-294
    • /
    • 2016
  • This study was conducted to promote consumer interest in Geothermal Heat Pump (Ground Source Heat Pump, GSHP) and district heating and cooling (District Heating & Cooling, DHC) systems, which are competing with each other in the heating and cooling field. Considering not only the required cost data of energy itself, but also external influence factors, the optimal mix ratio of these two energy systems was studied as follows. The quantitative data of the two energy systems was entered into a database and the non-quantitative factors of external influence were applied in the form of coefficients. Considering both of these factors, the optimal mix ratio of GSHP and DHC systems and minimum Life Cycle Cost (LCC) were obtained using an algorithm model design. The Optimal Energy Mix of GSHP & DHC (OEMGD) algorithm was developed using a software program (Octave 4.0). The numerical result was able to reflect the variety of external influence factors through the OEMGD algorithm. The OEMGD model found that the DHC system is more economical than the GSHP system and was able to represent the optimal energy mix ratio and LCC of mixed energy systems according to changes in the external influences. The OEMGD algorithm could be of help to improve the consumers' experience and rationalize their energy usage.