• Title/Summary/Keyword: Heating and Cooling Energy

Search Result 936, Processing Time 0.021 seconds

An Analysis of Heating and Cooling Loads by Insulated Shades and Control Method in an Energy Saving Apartment (에너지절약형 주택에서의 단열차양 적용과 제어방법에 따른 냉난방부하 분석)

  • Kwon, Kyung-Woo;Won, Jong-Seo
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.33-38
    • /
    • 2009
  • Energy loss from windows accounts for large scores of heating and cooling loads also in energy saving apartments that is reduced over 30% of total energy consumption. Movable reflective insulations, insulation shutters, blinds, insulated shades are used to reduce energy loads from windows. In this study, energy saving performance of insulated shades was simulated by control methods. According to installation of insulated shades, heating loads were decreased about $10.5{\sim}11.3%$, and cooling loads are decreased about $11.0{\sim}15.5%$ on an energy saving apartment. The heating peak load was reduced about 9.5% by insulated shades, but the cooling peak load is hardly ever decreased. Because in the condition of cooling peak load, latent cooling loads accounts for large score of cooling loads. Difference of the energy loads by a schedule control method and an outdoor detection control was no more than 5% for a base model. In the case of insulated shades with automatic control system, simple time schedule control system would be more efficient than outdoor detection control system that should use several sensors.

  • PDF

A Study on the Characteristics of Thermal Environment and Improvement of Energy Performance in 5ESS-2000 Telecommunication Equipment Room (5ESS-2000 통신장비실의 열환경특성과에너지성능 개선방안에 관한 연구)

  • Leigh, Seung-Bok;Cho, Chun-Sik
    • KIEAE Journal
    • /
    • v.4 no.4
    • /
    • pp.19-26
    • /
    • 2004
  • The purpose of this study was to evaluate the thermal environment of present state and energy consumption and to verify the improvement of energy performance applying free cooling in 5ESS-2000 telecommunication equipment room. Analysis program is used the DOE-2.1E and commercial CFD code, Star-CD. The results of the simulation show that free cooling could reduce 42.1% of cooling energy, increase 48.5% of heating energy because introduced outdoor air must heating and humidification. Therefore free cooling could reduce yearly 34,609.9 kWh of heating and cooling energy and this is reaching to 21.6% of total energy.

Evaluation of Heating and Cooling Thermal Output Characteristics of Prefabricated Steel Wall Panel System for Radiant Heating and Cooling (강판 마감형 조립식 벽패널 복사냉난방시스템의 냉난방 방열 특성 평가)

  • Lim, Jae-Han;Koo, Bo-Kyoung;Kim, Sung-Im;Song, Seung-Yeong
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.2
    • /
    • pp.70-77
    • /
    • 2013
  • Recently the radiant panel heating and cooling system has been regarded as an alternative of low temperature heating and high temperature cooling by applying the renewable energy sources to the heating and cooling of buildings. Especially this system can be used as HVAC system alternatives in super high-rise buildings for energy saving and thermal comfort. Also it can be possible to reduce the plenum space because the minimum ventilation air will be supplied into the space. This study focused on the evaluation the basic characteristics of thermal output in prefabricated steel wall panel system for radiant heating and cooling. In order to evaluate the thermal output according to both various supply water temperatures and supply water flow rates, three-dimensional dynamic heat transfer analysis was performed. As results, for the heating mode, thermal output increased by 26% with the supply temperature increasing by $5^{\circ}C$. The surface temperature of panels range within $1{\sim}3^{\circ}C$. For the cooling mode, thermal output decreased by 18.2% with the supply temperature increasing by $2^{\circ}C$. The surface temperature of panels range within $0.5{\sim}1^{\circ}C$ and it was shown the even temperature distribution.

Evaluation of thermal performance for solar cooling and heating system (태양열 냉.난방 및 급탕 시스템 열성능)

  • Kwak, Hee-Youl;Joo, Hong-Jin;Lee, Ho
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.203-208
    • /
    • 2009
  • This paper presents demonstration study results derived through field testing of a solar assisted cooling and heating system for the library of a cultural center building located in Gwangju, Korea. The area of demanded cooling and heating for building was about 350m2. Solar hot water was delivered by means of a 200m2 array of evacuated tubular solar collector (ETSC) to drive a single-effect (LiBr/H2O) absorption chiller of 10RT nominal cooling capacity. From March in 2008 to February in 2009, demonstration test were performed for solar cooling and heating system. After experiments and analysis, this study found that solar thermal system was 84% for the solar hot water supply and 12% for space heating and 4% for space cooling.

  • PDF

A Simulation Study on Effect Analysis of EMS Combined Control of Central Cooling and Heating System (중앙냉난방시스템의 EMS 복합제어 효과 분석에 관한 시뮬레이션 연구)

  • Jae-Yeob Song;Byung-Cheon Ahn
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.18 no.4
    • /
    • pp.33-44
    • /
    • 2022
  • In this study, we analyze the existing heating and cooling operation method for an office-type complex building with a central heating and cooling system, and examine the effects of applying various EMS that can be applied according to the load size to save energy in the building. For this purpose, simulation analysis was performed. As a control method, reset control of chilled water, hot water, cooling water and supply air temperatures, optimal start/stop of heat source, and number of heat source control were applied according to the load size, and energy consumption was analyzed accordingly. In addition, when all of these control methods were applied, the overlapping energy saving effect was finally confirmed. As a result, it was possible to confirm the energy saving effect when EMS for reset control and heat source control were applied compared to the existing control method of the heating and cooling system, and the effect for the case of using all these control methods in combination was also confirmed.

A Comparative Analysis of Energy Simulation Results and Actual Energy Consumption on Super High-rise Apartments (초고층 공동주택의 세대별 냉난방부하 시뮬레이션 결과 및 에너지 실사용량과의 비교 분석)

  • Suh, Hye-Soo;Kim, Byung-Seo
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.4
    • /
    • pp.34-40
    • /
    • 2011
  • Apartment Housing has been increasing steadily, particularly our current super high-rise apartment houses that represent the culture has become a trend in Korea. These super high-rise apartment houses' curtain wall system increases heating and cooling loads, it is expected to vary by each unit's thermal properties. In this study, measured indoor environment and energy simulation results were compared to actual energy consumption. As a result, the various factors that affect heating and cooling loads, such as direction, plan type and glazing area, influence each unit's load characteristic. In particular, according to the electricity costs savings behavior, the occupant's thermal discomfort is expected to be large in summer. Therefore, to reduce heating and cooling load for each unit requires a reasonable plan.

Prediction on Variation of Building Heating and Cooling Energy Demand According to the Climate Change Impacts in Korea (우리나라의 기후 변화 영향에 의한 건물 냉난방에너지 수요량 변화의 예측)

  • Kim, Ji-Hye;Kim, Eui-Jong;Seo, Seung-Jik
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.789-794
    • /
    • 2006
  • The potential impacts of climate change on heating and cooling energy demand were investigated by means of transient building energy simulations and hourly weather data scenarios for Inchon. Future trends for the 21 st century was assessed based oil climate change scenarios with 7 global climate models(GCMs), We constructed hourly weather data from monthly temperatures and total incident solar radiation ($W/m^2$) and then simulated heating and cooling load by Trnsys 16 for Inchon. For 2004-2080, the selected scenarios made by IPCC foresaw a $3.7-5.8^{\circ}C$rise in mean annual air temperature. In 2004-2080, the annual cooling load for a apartment with internal heat gains increased by 75-165% while the heating load fell by 52-71%. Our analysis showed widely varying shifts in future energy demand depending on the season. Heating costs will significantly decrease whereas more expensive electrical energy will be needed of air conditioning during the summer.

  • PDF

Comparative study on the effect of cooling & heating loads by lighting energy of various light sources in an office building

  • Hong, Won Pyo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.30 no.3
    • /
    • pp.94-105
    • /
    • 2016
  • The objective of the work was to evaluate the impact of lighting energy to cooling and heating consumption in medium scale office building, when currently installed fluorescent lights were replaced with various LED lighting fixtures. This evaluation comes from an integrated approach combining the proper indoor lighting environment and the thermal aspects of cooling & heating consumption in office building. These simulations were performed by coupling an appropriate luminaire analysis for energy consumption and a dynamic thermal simulation software (TRNSYS). To analyze comparative study of effects on the heating, cooling loads, and energy consumption of an LED lamp application, 2 types of LED lamp with low light power watt(LPW) 24W and high LPW 7.5W and a fluorescent lights(FL) with 37W are used respectively. Integrated building energy consumption decreased up to 3.2% when fluorescent lamps were replaced with LEDs. Thus, the high LPW of LED(7.5W) replaced with the same number of FL shows an effective energy saving and cost- effective luminary.

Energy Performance Evaluation of Building Micro-grid System Including Micro-turbine in Hospital Buildings (마이크로터빈이 포함된 빌딩마이크로그리드시스템의 병원건물의 에너지성능평가)

  • Kim, Byoung-Soo;Hong, Won-Pyo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.10a
    • /
    • pp.279-283
    • /
    • 2009
  • Distributed generation(DG) of combined cooling, heat. and power(CCHP)has been gaining momentum in recent year as efficient, secure alternative for meeting increasing energy demands. This paper presents the energy performance of microturbine CCHP system equipped with an absorption chiller by modelling it in hospital building. The orders of study were as following. 1)The list and schedule of energy consumption equipment in hospital were examined such as heating and cooling machine, light etc. 2) Annual report of energy usage and monitoring data were examined as heating, cooling, DHW, lighting, etc. 3) The weather data in 2007 was used for simulation and was arranged by meteorological office data in Daejeon. 4) Reference simulation model was built by comparison of real energy consumption and simulation result by TRNSYS and ESP-r. The energy consumption pattern of building were analyzed by simulation model and energy reduction rate were calculated over the cogeneration. As a result of this study, power generation efficiency of turbine was about 30% after installing micro gas turbine and lighting energy as well as total electricity consumption can be reduced by 40%. If electricity energy and waste heat in turbine are used, 56% of heating energy and 67% of cooling energy can be reduced respectively, and total system efficiency can be increased up to 70%.

  • PDF

The optimal window system of office buildings considering energy efficiency (에너지 효율로 본 상업용 건물의 적정 창호에 관한 연구)

  • Yoo, Ho-Chun;Oh, Young-Ho;Park, Seung-Kil
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.4
    • /
    • pp.53-60
    • /
    • 2005
  • The purpose of this study is to improve energy efficiency of windows in office buildings through the evaluation of their heating, cooling and illumination load. Energy efficiency is influenced by window size which is determined at the early stage of building design. The process of this study is as follows. First, energy performance is analysed according to the various rates of windows through computer simulation (ECOTECT). Then, the annual heating, cooling and illuminating loads according to the different window sizes are compared one another. Results indicated that the optimal window size considering energy efficiency is 50% of the surface area. When the window size is 50% of the surface area, annual maintenance expense is also smallest. Since the cost of cooling is larger than that of heating, too low indoor air temperature in summer is unfavorable based on the reasonable annual maintenance expenses.