• Title/Summary/Keyword: Heating Furnace

Search Result 260, Processing Time 0.022 seconds

A Study on Accident Frequency by Installing Safety Devices in the LPG Heating and Drying Furnace (LPG 가열로 및 건조로의 안전장치 설치에 따른 사고빈도에 관한 연구)

  • Song, Dong-Woo;Kim, Ki-Sung;Kim, Choong-Hee;Lee, Seong-Gueong;Lee, Su-Kyung
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.4
    • /
    • pp.49-54
    • /
    • 2015
  • The purpose of this study is to assess the risk of depending on the presence or absence of safety device of domestic heating and drying furnaces, by derivation and analysis of accident frequency of safety devices through FTA (Fault Tree Analysis). Installation standards are lacking in Korean for the safety device of LPG heating and drying furnace, which have a risk of explosion due to structure to trap the leaked gas. Four different safety devices were selected on the basis of NFPA and national standards for combustors of other equipment. Effects of frequency reduction in accidents were analyzed before and after installing the safety devices respectively. As a result, a minimal leakage safety device was presented for preventing damages from gas leak of domestic LPG heating and drying furnace.

Fuel Oil Characteristics of Mulching Waste Vinyl by Indirect Heating Emulsion System (간접가열 유화설비에 의한 폐멀칭비닐의 연료유 특성)

  • Kim, Hae-Ji;Kim, Nam-Kyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.1
    • /
    • pp.37-42
    • /
    • 2009
  • This paper describes the fuel oil characteristics of mulching waste vinyl by indirect heating emulsion system. For the emulsion experiment of waste vinyl, the system is composed of melting furnace, the 1th pyrolysis furnace, and the 2nd pyrolysis furnace. The mulching waste vinyl is used for the fuel oil characteristics analysis of mulching waste vinyl. The refined oil, gasoline, and diesel oil are extracted and quantified to analysis the fuel oil characteristics. From the results of experiments, it has been shown that the production of fuel oil from mulching waste vinyl is possible using the emulsion system.

  • PDF

A Basic Study on crack characteristics depending on the mixture rate and heating temperature of calcium hydroxide in high-strength concrete, containing a high percentage of blast-furnace slag (고로슬래그를 다량 치환한 고강도 콘크리트의 수산화칼슘 함유율 및 가열온도에 따른 균열성상에 관한 기초적 연구)

  • Byun, Yong-Hyun;Park, Dong-Cheon;Ryu, Dong-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.53-54
    • /
    • 2015
  • This study is conducted to investigate the characteristics of cracks depending on the different mixture rates of calcium hydroxide and distilled water in high-strength concrete, which is substituted with a high percentage of blast-furnace slag, by using specimens produced under different heating temperatures: 600℃, 800℃, and 1000℃, respectively. According to the results of the study, the specimen heated under the temperature of 600℃ did not produce cracks; the specimen heated under 800℃ produced little cracks and showed no difference between calcium hydroxide and distilled water; whereas the specimen heated under 1000℃ produced cracks larger than 5mm on average in the case of calcium hydroxide, compared to distilled water.

  • PDF

COMPUTATIONAL STUDY OF GLASS FIBER DRAWING PROCESS IN A DRAW FURNACE OF OPTICAL FIBER MASS MANUFACTURING SYSTEM (광섬유 대량생산용 인출퍼니스 내 유리섬유 인출공정의 전산해석)

  • Kim, K.;Kwak, H.S.;Kim, D.
    • Journal of computational fluids engineering
    • /
    • v.18 no.4
    • /
    • pp.69-73
    • /
    • 2013
  • Mass manufacturing of optical fiber includes the process of very thin glass fiber drawing by heating and softening the high purity silica preform and applying the draw tension on the softened tip of preform neck-down profile in a draw furnace. In this computational study, this process is numerically modeled with simplified geometry of the draw furnace which is comprised of essential parts such as concentric graphite heater, muffle tube, and insulation surrounding the heater. The iterative computational scheme is employed between one-dimensional model of neck-down profile prediction and two-dimensional axisymmetric thermo-fluid CFD computation of radiative heating and working gas convection. The computational results show the experimentally observed neck-down profile in heated section of preform, while yielding the reasonable values of draw tension and heater wattage. Also, this study analyzes and discusses the effects of heating conditions such as heater length and temperature on several important aspects of glass fiber drawing process.

Hemi-cube algorithm and its application to thermal analysis of crystal growth furnace (반정육면체 알고리즘 및 단결성 성장로의 열해석에의 응용)

  • Lee, Seung-Bok;Jeong, Jin-Su;Go, Sang, Geun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.7
    • /
    • pp.905-914
    • /
    • 1998
  • View factor determination is very important in thermal analysis problems with surface radiation but it is very difficult to determine view factors for complex geometries. Exact calculation of view factors for crystal growth furnace is essential due to not only its high surface temperature but the radiation shield, complicated heating system. In this study, view factor calculation algorithm is introduced and applied to cylindrical crystal growth furnace. This algorithm is based on the Hemi-Cube Algorithm and the results obtained with this algorithm show good agreements with those of analytical solution. As an application of this algorithm, temperature profiles and heating value distributions for various furnaces are calculated and the shape criteria for better furnace are suggested.

3D Unsteady Numerical Analysis of Slab Heating Characteristics in a Reheating Furnace for Steel Mill Company (제철소용 가열로 내 슬랩 가열 특성의 3차원 비정상 해석)

  • Han, Sang-Heon;Kim, Dong-Min;Baek, Seung-Wook;Kim, Chang-Young
    • Journal of the Korean Society of Combustion
    • /
    • v.11 no.1
    • /
    • pp.34-42
    • /
    • 2006
  • Numerical analysis code has been developed to investigate the slab heating characteristics in a reheating furnace of a steel mill company. Unsteady 3-Dimensional behaviour can be predicted with the developed code. Premixed flame model is adopted for combustion phenomena and eddy dissipation model is used for turbulent combustion. Non -gray FVM radiation method is used to get a better accurate radiative solution. Slab movement can be fully traced from entrance into a reheating furnace until it#s exit and computation is performed during that period.

  • PDF

A Preliminary Study for Microwave Application to Energy Efficient Contaminated Soil Cleanup (마이크로파를 적용한 에너지 효율적인 오염토양 정화를 위한 예비연구)

  • Ham, Seok-Jin;Yang, In-Ho;Oh, Hyun-Sang;Cho, Hyeon-Jo;Kim, Gun-In;Jeong, Sang-Jo
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.3
    • /
    • pp.28-37
    • /
    • 2011
  • A preliminary study for energy efficient soil heating and contaminant removal using microwave was conducted. Soils sampled from floodplain were heated with microwave oven, and soil heating property and energy efficiency were compared to those heated with electrical furnace. In addition the effects of water, soil organic matter, and contaminated diesel on soil heating with microwave were investigated. Even though the electrical power consumption of electrical furnace and microwave oven were similar, temperature of soil heated with microwave oven was significantly higher than that of soil heated with electrical furnace. The increase of soil moisture content delays the raise of soil temperature during heating it with microwave oven. However, the effects of total petroleum hydrocarbon (TPH) (<10%) in contaminated soil matrix and small amount of soil organic matter (<5%) on the increase of soil temperature by microwave were not significant. Further studies for contaminated soils with different texture using pilot scale microwave reactor are required for application of this technique in the field.

A Study on Reductive Furnace for Copper Annealing Using Catalytic Combustion (촉매연소를 이용한 동 열처리용 환원로에 관한 연구)

  • Jeong, Nam-Jo;Kang, Sung-Kyu;Song, Kwang-Sup;Cho, Sung-June;Yu, Sang-Phil;Ryou, In-Su
    • 한국연소학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.83-89
    • /
    • 2001
  • Most technologies of reduction process used in the heat treatment of existent metal products are related to metals applied to bolts and parts of automobiles, and nonmetal such as copper. Heating conditions and reduction gases produced in above processes depend on types of products to be treated thermally but heating systems employ electricity commonly and the reduction gases are separated into additional production equipment and a gas dryer and inefficiently provided into the system. Electrical heating system has the advantage of convenient temperature-control but is not economical because of disadvantages of high electricity-running cost and extra installation cost of a transformer. Accordingly, development of the system which has economical heating mode in which provision of reduction gas and heating conditions are unified is necessary for improvement of economy and efficiency in current reduction processes. This study aimed to develop a new advanced heat treatment furnace using catalytic combustion. thereby minimizing the cost during heating, supplying heat and reductive gas at the same time and controlling operating condition freely by changing electrical heating system to heating system by the gas combustion and regeneration of wasted heat.

  • PDF

Change in Microstructure and Coating Layer of Al-Si Coated Steel after Conductive Heating (Al-Si 도금강의 통전 가열에 따른 미세조직과 도금층 변화)

  • Jeong, Woo Chang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.34 no.3
    • /
    • pp.107-115
    • /
    • 2021
  • Al-Si coated boron steel has been widely used as commercial hot stamping steel. When the steel is heated at 900~930℃ for 5 min in an electric furnace, thickness of the coating layer increases as a consequence of formation of intermetallic compounds and diffusion layer. The diffusion layer plays an important roll in blunting the propagation of crack from coating layer to base steel. Change in microstructure and coating layer of Al-Si coated boron steel after conductive heating with higher heating rate than electric furnace has been investigated in this study. Conductive-heated steel showed the martensitic structure with vickers hardness of 505~567. Both intermetallic compounds in coating layer and diffusion layer were not observed in conductive-heated steel due to rapid heating. It has been found that the conductive-heating consisting of rapid heating to 550℃ which is lower than melting point of Al-Si coating layer, slower heating to 900℃, and then 1 min holding at 900℃ is effective in forming intermetallic compound in coating layer and diffusion layer.