• 제목/요약/키워드: Heating Furnace

검색결과 260건 처리시간 0.021초

Development of the RE indirect-heating LPE furnace and the effect of impurity in YIG film on the MSSW properties

  • Fujino, M.;Fujii, T.;Sakabe, Y.
    • 한국결정성장학회지
    • /
    • 제12권6호
    • /
    • pp.288-291
    • /
    • 2002
  • We developed a new RF indirect-heating LPE furnace. The thermal gradient of our newly developed furnace is less than that of direct heating, and is as gentle as that of the resistance-heating LPE furnace. With this new furnace, the heating and/or cooling is faster than that of the resistance-heating furnace. Impurity-doped YIG film was grown from a $PbO-B_{2}O_{3}$, based flux on a (111) GGG substrate. To study the effect of the impurities on the MSSW threshold power and the saturation response time, we used two microstrip lines to excite and propagate the MSSW at 1.9 GHz. The MSSW threshold power and saturation response time was found to be related to the $\Delta$H.

순산소 연소를 이용한 연소로 가열특성에 관한 실험적 연구 (A Study on the Furnace Heating Characteristics Using Oxy-fuel Combustion)

  • 정유석;이은경;고창복;노동순;장병록;한형기
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2006년도 제33회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.229-234
    • /
    • 2006
  • The oxy-fuel combustion heating characteristics is investigated experimentally by measuring furnace and steel temperature variations for batch type furnace simulator with a specially designed low NOx oxy-fuel burner. Economics of using oxy-fuel combustion is confirmed and, the furnace and steel temperature variations for different heating conditions are compared to deduce optimal heating control pattern for energy savings and rapid uniform heating. High $CO_2$ concentration (> 80-90%), low NOx (< 40ppm) and CO (< 10ppm) are measured in the flue gas. Temperature differences (< $30^{circ}C$) inside the furnace and steel are reduced relatively by increasing the burner jet momentum.

  • PDF

가열로내 피열재의 온도분포 해석 (Analysis on the Temperature Distribution for the Billet in a Furnace)

  • 권오붕;김명관;장강영;권현출;배대석
    • 동력기계공학회지
    • /
    • 제8권2호
    • /
    • pp.24-30
    • /
    • 2004
  • In this paper, the optimal heating pattern of the furnace is sought to reduce the unnecessary energy loss. A finite difference method was used to estimate the transient temperature field of the billet in a furnace. Heat conduction equations were used in the interior nodes of the billet, while energy balances for conduction, convection, and radiation were considered in the boundary nodes. Several heating patterns for the furnace were tested and subsequently compared each other. The results showed that the temperature in the preheating zone should be set to relatively low. The temperature distributions of the billet are quite different from each other when different heating pattern are used, even though the heating patterns have the same amount of energy consumption. It reveals that there exists an optimal heating pattern to save the energy loss.

  • PDF

용융아연도금라인(HGL)의 Induction Type Furnace 적용 (Application of the induction type furnace for HGL)

  • 이만식
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 제3회 압연심포지엄 논문집 압연기술의 미래개척 (Exploitation of Future Rolling Technologies)
    • /
    • pp.111-118
    • /
    • 1999
  • This article describes the basic engineering concepts to be considered in the application of an induction heating furnace in the hot-dip galvanizing line. Experience in the Dongkuk project in Pohang, has shown that this arrangement has many advantages over the conventional method of using a combustion-gas heated furnace. Investment and operating costs are lower, the line length is much shorter, line operation is more convenient, air pollution is reduced, and the coated strip at of top-quality. As these benefits become well known, it is anticipated that the concept of induction heating will be more widely used in both new and revamped process lines. Induction heating is suitable for the production of Commercial Quality hot galvanized coils. More research is required to extend the present concept to the production of higher forming grades such as Drawing, Deep Drawing and Extra Deep Drawing Quality steels. A combination of induction heating and combustion-gas heating may lead to the way to the processing of these qualities of strip.

  • PDF

연속식 가열로의 Level 2 제어 시스템 설계 (Design of Level 2 Control System for Continuous Reheat Furnaces)

  • 유보현;이재용;임동렬;차재민;염충섭
    • 시스템엔지니어링학술지
    • /
    • 제12권1호
    • /
    • pp.113-120
    • /
    • 2016
  • Steel in a continuous reheat furnace is heated to higher temperature to be treated in the rolling steel process. Due to this reason the continuous reheat furnace system requires an optimal control system to adjust the temperature inside the furnace. Level 2 control systems for continuous reheat furnaces generate automatic heating set points for the level 1 system of the furnace based on the mathematical thermal model which can give a good estimation of steel heating inside the furnace and is used to adjust heating requirements to optimize furnace combustion. For the current study the analytic methodology based on the design procedure from the systems engineering to develop new level 2 control system of a continuous reheat furnace was proposed. The system analysis and the requirements of the level 2 control system were derived using the unified modeling language (UML) 2.0, and the design of database and the graphic user interface (GUI) for the level 2 control system were conducted.

Prediction of Transient Slab Heating Characteristics in a Walking Beam Type of Reheating Furnace

  • Han Sang-Heon;Baek Seung-Wook
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2006년도 PARALLEL CFD 2006
    • /
    • pp.405-407
    • /
    • 2006
  • A full-scale simulation of steel mill reheating furnace was performed by using parallel computing technology. Turbulent flow as well as chemical reaction is considered and solved in a coupled manner while radiation is also calculated. The movement of slab is taken into account so that a more precise observation of its heating characteristics becomes possible through this numerical analysis.

  • PDF

광섬유 생산공정용 퍼니스 내의 모재 가열 및 유리섬유 인출에 대한 열전달 해석 (HEAT TRANSFER ANALYSIS ON THE PREFORM HEATING AND THE GLASS FIBER DRAWING IN A GRAPHITE FURNACE FOR OPTICAL FIBER MANUFACTURING PROCESS)

  • 김경진;김동주;곽호상
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.88-91
    • /
    • 2011
  • Glass fiber drawing from a silica preform is one of the most important processes in optical fiber manufacturing. High purify silica preform of cylindrical shape is fed into the graphite furnace, and then a very thin glass fiber of 125 micron diameter is drawn from the softened and heated preform. A computational analysis is performed to investigate the heat transfer characteristics of preform heating and the glass fiber drawing in the furnace. In addition to the dominant radiative heating of preform by the heating element in the furnace, present analysis also includes the convective heat transport by the gas flowing around the preform that experiences neck-dawn profile and the freshly drawn glass fiber at high fiber drawing speed. The computational results present the effects of gas flow on the temperature of preform and glass fiber as well as the neck-down profile of preform.

  • PDF

광섬유 생산용 유리섬유 인출공정에 대한 복사 열전달 해석 (RADIATIVE HEAT TRANSFER ANALYSIS OF GLASS FIBER DRAWING IN OPTICAL FIBER MANUFACTURING)

  • 김경진;김동주;곽호상
    • 한국전산유체공학회지
    • /
    • 제16권1호
    • /
    • pp.22-29
    • /
    • 2011
  • In this study, the glass fiber drawing from a silica preform in the furnace for the optical fiber manufacturing process is numerically simulated by considering the radiative heating of cylindrically shaped preform. The one-dimensional governing equations of the mass, momentum, and energy conservation for the heated and softened preform are solved as a set of the boundary value problems along with the radiative transfer approximation between the muffle tube and the deformed preform shape, while the furnace heating is modeled by prescribing the temperature distribution of muffle tube. The temperature-dependent viscosity of silica plays an important role in formation of preform neck-down profile when the glass fiber is drawn at high speed. The calculated neck-down profile of preform and the draw tension are found to be reasonable and comparable to the actual results observed in the optical fiber industry. This paper also presents the effects of key operating parameters such as the muffle tube temperature distribution and the fiber drawing speed on the preform neck-down profile and the draw tension. Draw tension varies drastically even with the small change of furnace heating conditions such as maximum heating temperature and heating width, and the fine adjustment of furnace heating is required in order to maintain the appropriate draw tension of 100~200 g.

진공상태에서의 전열현상에 대한 실험적 연구 (Experimental Study of Heat Transfer in Vacuum Furnace)

  • 양제복;김원배;동상근
    • 한국연소학회:학술대회논문집
    • /
    • 대한연소학회 2003년도 제27회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.109-113
    • /
    • 2003
  • Low pressure or vacuum carburizing(LPC) has undergone major further developments since 1980 and now it has achieved industrial maturity. The advantage of low pressure vacuum carburizing over gas carburizing is not only the creation of surface entirely free of oxide and environmentally friendly but also a reduction in batch times, lower gas and energy consumption and the prevention of soot. In this study the experiment was carried out to investigate the effects of vacuum atmosphere in the heating furnace. Heat transfer rate and uniformity of temperatures of test samples in the pressure range of a few 0.1torr was examined on a test charge of 100kg. It is found that the fuel saving rate due to decreasing heating time reach to 20% in the vacuum heating mode as compared with atmospheric heating mode. Also the uniformity of temperatures in the samples was improved significantly in the vacuum heating mode. Also the effects of the RC fan for stirring atmosphere inside furnace was examined. Results shows RC fan appears to provide a reasonable tool for improving uniformity of temperature in the atmospheric heating mode.

  • PDF

스케일 층의 생성 및 성장을 고려한 가열로 내 슬랩의 승온 특성 해석에 관한 연구 (A Numerical Study on the Slab Heating Characteristics in a Reheating Furnace with the Formation and Growth of Scale on the Slab Surface)

  • 이동은;장정현;김종민;홍동진;박해두;박윤범;김만영
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.109-112
    • /
    • 2008
  • In this work, a mathematical heat transfer model of a walking-beam type reheating furnace that can predict the formation and growth of the scale layer, which is produced due to oxidative reaction between the furnace oxidizing atmosphere and the steel surface in the reheating furnace, has been developed. The model can also predict the heat flux distribution within the furnace and the temperature distribution in the slab and scale throughout the reheating furnace process by considering the heat exchange between the slab and its surroundings in the furnace, including radiant heat transfer among the slabs, the skids, the hot gases and the furnace wall as well as the gas convection heat transfer in the furnace. Using the model developed in this work, the effects of the scale layer on the heat transfer characteristics and temperature behavior of the slab is investigated. A comparison is also made between the predictions of the present model and the data from an in situ measurement in the furnace, and a reasonable agreement is founded.

  • PDF