• Title/Summary/Keyword: Heating Device

Search Result 481, Processing Time 0.025 seconds

Effect of RF Bias on Electron Energy Distributions and Plasma Parameters in Inductively Coupled Plasma (유도 결합 플라즈마에서 플라즈마 변수와 전자 에너지 분포에 대한 극판 전력 인가의 영향)

  • Lee, Hyo-Chang;Chung, Chin-Wook
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.3
    • /
    • pp.121-129
    • /
    • 2012
  • RF biased inductively coupled plasma (ICP) is widely used in semiconductor and display etch processes which are based on vacuum science. Up to now, researches on how rf-bias power affects have been focused on the controls of dc self-bias voltages. But, effect of RF bias on plasma parameters which give a crucial role in the processing result and device performance has been little studied. In this work, we studied the correlation between the RF bias and plasma parameters and the recent published results were included in this paper. Plasma density was changed with the RF bias power and this variation can be explained by simple global model. As the RF bias was applied to the ICP, increase in the electron temperature from the electron energy distribution was measured indicating electron heating. Plasma density uniformity was enhanced with the RF bias power. This study can be helpful for the control of the optimum discharge condition, as well as the basic understanding for correlation between the RF bias and plasma parameters.

Palm-Size-Integrated Microwave Power Module at 1.35-GHz for an Atmospheric Pressure Plasma for biomedical applications

  • Myung, C.W.;Kwon, H.C.;Kim, H.Y.;Won, I.H.;Kang, S.K.;Lee, J.K.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.498-498
    • /
    • 2013
  • Atmospheric Pressure Plasmas have pioneered a new field of plasma for biomedical application bridging plasma physics and biology. Biological and medical applications of plasmas have attracted considerable attention due to promising applications in medicine such as electro-surgery, dentistry, skin care and sterilization of heat-sensitive medical instruments [1]. Traditional approaches using electronic devices have limits in heating, high voltage shock, and high current shock for patients. It is a great demand for plasma medical industrial acceptance that the plasma generation device should be compact, inexpensive, and safe for patients. Microwave-excited micro-plasma has the highest feasibility compared with other types of plasma sources since it has the advantages of low power, low voltage, safety from high-voltage shock, electromagnetic compatibility, and long lifetime due to the low energy of striking ions [2]. Recent experiment [2] shows three-log reduction within 180-s treatment of S. mutans with a low-power palm-size microwave power module for biomedical application. Experiments using microwave plasma are discussed. This low-power palm-size microwave power module board includes a power amplifier (PA) chip, a phase locked loop (PLL) chip, and an impedance matching network. As it has been a success, more compact-size module is needed for the portability of microwave devices and for the various medical applications of microwave plasma source. For the plasma generator, a 1.35-GHz coaxial transmission line resonator (CTLR) [3] is used. The way of reducing the size and enhancing the performances of the module is examined.

  • PDF

A Research on the improvement scheme for manufacturing bronze warm forging die through environment-friendly workshop (황동제 온간단조용 금형제작과 환경친화형 작업장 개선에 관한 연구)

  • Kim, Sei-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.2
    • /
    • pp.420-425
    • /
    • 2010
  • In the process of warm forging, billet is heated up to $800^{\circ}C$ and located in the upper part of die block impression. The scattered oxidized scale may cause workers burn and shortening of die life sticking to the die block impression. The separating materials sprayed in die block cause harmful dust, harmful mist, fume, and bad odor which contaminate workshop environment. The process is classified as one of the avoided jobs and make the planned output achievement difficult. Development of an elimination device to clear out the contaminating materials in the workshop and improvement of the unsatisfactory maintenance method to fix the abrasion of die block impression which delays the dead line, cost increases needs to be developed. In this research, I tried to solve the problems caused in warm forging of bronze pipe joint such as the billet heating process, die maintenance, and manufacturing cost through improvement of warming forging manufacturing method and die maintenance method and eliminating harmful gas which will make the workshop more environment friendly.

Indoor air quality and ventilation requirement in residential buildings: A case study of Tehran, Iran

  • Ataei, Abtin;Nowrouzi, Ali;Choi, Jun-Ki
    • Advances in environmental research
    • /
    • v.4 no.3
    • /
    • pp.143-153
    • /
    • 2015
  • The ventilation system is a key device to ensure both healthful indoor air quality (IAQ) and thermal comfort in buildings. The ventilation system should make the IAQ meet the standards such as ASHRAE 62. This study deals with a new approach to modeling the ventilation and IAQ requirement in residential buildings. In that approach, Elite software is used to calculate the air supply volume, and CONTAM model as a multi-zone and contaminant dispersal model is employed to estimate the contaminants' concentrations. Amongst various contaminants existing in the residential buildings, two main contaminates of carbon dioxide ($CO_2$) and carbon monoxide (CO) were considered. CO and $CO_2$ are generated mainly from combustion sources such as gas cooking and heating oven. In addition to the mentioned sources, $CO_2$ is generated from occupants' respirations. To show how that approach works, a sample house with the area of $80m^2$ located in Tehran was considered as an illustrative case study. The results showed that $CO_2$ concentration in the winter was higher than the acceptable level. Therefore, the air change rate (ACH) of 4.2 was required to lower the $CO_2$ concentration below the air quality threshold in the living room, and in the bedrooms, the rate of ventilation volume should be 11.2 ACH.

The Roofing System of High wind-Resistant Performance using Thermoplastic polyolefin and Electromagnetic Induction Technology (TPO 시트재와 유도가열공법을 적용한 고내풍성 지붕마감 공법)

  • Choi, Hee-Bok;Shin, Yoon-Seok;Choi, Jin-Cheol;Lee, Bo-Hyeong;Kang, Kyung-In
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.1
    • /
    • pp.103-109
    • /
    • 2009
  • Strong winds according to global warming cause the increase of the frequency and the repair cost of damaged roofs. In the United States, Factory Mutual Insurance Company(FMIC) promotes the roofing design that resists heavy wind-load, as the means of strict criteria. This fact reveals that more durable roofing system will be also required in Korea. Therefore, this study aims at developing such a system with high wind-resistance performance using Thermoplastic polyolefin(TPO) and Electromagnetic induction technology(EIT) than the previous systems. The system presented in this study consists of 4 main devices as follow; 1) a disc to fix sheets for TPO & EIT method, which can conduct structural design according to site condition, such as region, building height, and wind load. 2) a nail to have about 30% stronger lifting-up capacity than that of the previous nail. 3) a disc to fix sheets, which has triangle protuberance not to damage sheets in the repeatable wind load, and 4) a electromagnetic induction device to combine a disc and a sheet by heating uniformly and quickly adhesive agent on the disc. The results of mock-up test illustrate that the system provides wind-resistant performance to achieve satisfactorily the structural design criteria of FMIC. In addition, the system is faster, chipper, and easier than the existing system, and is expected that this roofing system can be applied to the rehabilitations of an existing as well as a new building.

A Study on Battery Performance of a Motor Driven Local Transportation Vehicle (모터구동 근거리 이동수단의 배터리성능에 관한 연구)

  • Ko, Ji-Woon;Ko, Gwang-Soo;Park, Youn-Cheol
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.4
    • /
    • pp.430-436
    • /
    • 2012
  • This study was conducted to measure battery's voltage drop in a compact electric vehicle to get driving performance in various driving situations. In the experiment, to evaluate the energy consumption and milage, system performance have measured with changing of the driving speed and the reduction of driving distance when the heater was operating. The battery of the car in this study is lead type storage battery. The driving velocity was changed from 10km/h to 50 km/h with 20km/h intervals and the operating step of the heating device. As results, the electronic consumption rate was maximum at 35 km/h of vehicle speed and if the driver turning the heater at maximum, capacity will lead to 35% of energy consumption increment.

Synthesis of Solution-Processed Cu2ZnSnSe4 Thin Films on Transparent Conducting Oxide Glass Substrates

  • Ismail, Agus;Cho, Jin Woo;Park, Se Jin;Hwang, Yun Jeong;Min, Byoung Koun
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.7
    • /
    • pp.1985-1988
    • /
    • 2014
  • $Cu_2ZnSnSe_4$ (CZTSe) thin films were synthesized on transparent conducting oxide glass substrates via a simple, non-toxic, and low-cost process using a precursor solution paste. A three-step heating process (oxidation, sulfurization, and selenization) was employed to synthesize a CZTSe thin film as an absorber layer for use in thin-film solar cells. In particular, we focused on the effects of sulfurization conditions on CZTSe film formation. We found that sulfurization at $400^{\circ}C$ involves the formation of secondary phases such as $CuSe_2$ and $Cu_2SnSe_3$, but they gradually disappeared when the temperature was increased. The formed CZTSe thin films showed homogenous and good crystallinity with grain sizes of approximately 600 nm. A solar cell device was tentatively fabricated and showed a power conversion efficiency of 2.2% on an active area of 0.44 $cm^2$ with an open circuit voltage of 365 mV, a short current density of 20.6 $mA/cm^2$, and a fill factor of 28.7%.

Tunable Polymeric Bragg Grating filter Using Nanoimprint Technique (나노 임프린트 기술을 이용한 폴리머 도파로 기반의 브래그 격자형 파장 가변 필터)

  • Kim, Do-Hwan;Chin, Won-Jun;Lee, Sang-Shin;Ahn, Seh-Won;Lee, Ki-Dong
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.1
    • /
    • pp.99-103
    • /
    • 2006
  • A tunable wavelength filter was proposed and demonstrated by using the UV nanoimprint technique. It consists of a Bragg grating in polymer waveguides and a heating electrode. The manufacturing of the grating was substantially simplified with the introduction of a smart imprint stamp containing a waveguide pattern integrated with the grating pattern. The center wavelength of the filter was successfully tuned by taking advantage of the thermooptic effect in polymers, which was induced by supplying electrical power to the electrode. For the fabricated device, a transmission dip of ${\~}$15 dB and a 3-dB bandwidth of 0.8 nm were obtained at the Bragg wavelength of ${\~}$l560 nm. The achieved thermooptic tuning efficiency was ${\~}$0.28 nm/mW, while the center wavelength was shifted from 1560 nm to 1558 nm with the electrical power consumption of 7 mW.

Tunable Optical Delay Line Based on Polymer Single-Ring Add/Drop Filters and Delay Waveguides (폴리머 단일 링 Add/Drop 필터와 지연 도파로로 구성된 튜닝 가능 광 신호 지연기)

  • Kim, Kyoungrae;Moon, Hyunseung;Chung, Youngchul
    • Korean Journal of Optics and Photonics
    • /
    • v.27 no.5
    • /
    • pp.174-180
    • /
    • 2016
  • A tunable optical delay line is designed, fabricated, and characterized. The tunable delay line consists of four polymer-ring add/drop filters with delay waveguides between adjacent ones. The polymer waveguide is a buried structure, designed to be square with core width and height of $1.8{\mu}m$. The refractive indices of the core and cladding polymer are 1.48 and 1.37 respectively. The large index difference and small cross section of the waveguide enable us to realize a compact device using a small radius of curvature. Four pairs of electrodes are evaporated above the add/drop filters to provide heating currents for thermal tuning. In measurements we can identify variable time delays of 110, 225, and 330 ps in proportion to the number of delay lines.

A Study on Effect of Intake Mixture Temperature upon Fuel Economy and Exhaust Emissions in Diesel Engines with a Scrubber EGR System

  • Bae, Myung--Whan;Ryu, Chang-Seong;Yoshihiro Mochimaru;Jeon, Hyo-Joong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.315-331
    • /
    • 2004
  • The effects of intake mixture temperature on performance and exhaust emissions under four kinds of engine loads were experimentally investigated by using a four-cycle. four-cylinder. swirl chamber type. water-cooled diesel engine with scrubber EGR system operating at three kinds of engine speeds. The purpose of this study is to develop the scrubber exhaust gas Recirculation (EGR) control system for reducing $\textrm{NO}_{x}$ and soot emissions simultaneously in diesel engines. The EGR system is used to reduce $\textrm{NO}_{x}$ emissions. And a novel diesel soot-removal device of cylinder-type scrubber with five water injection nozzles is specially designed and manufactured to reduce soot contents in the recirculated exhaust gas to the intake system of the engine. The influences of cooled EGR and water injection. however. would be included within those of scrubber EGR system. In order to survey the effects of cooled EGR and moisture on $\textrm{NO}_{x}$ and soot emissions. the intake mixtures of fresh air and recirculated exhaust gas are heated up using a heater with five heating coils equipped in a steel drum. It is found that intake and exhaust oxygen concentrations are decreased, especially at higher loads. as EGR rate and intake mixture temperature are increased at the same conditions of engine speed and load. and that $\textrm{NO}_{x}$ emissions are decreased. while soot emissions are increased owing to the decrease in intake and exhaust oxygen concentrations and the increase in equivalence ratio. Thus ond can conclude that $\textrm{NO}_{x}$ and soot emissions are considerably influenced by the cooled EGR.