• Title/Summary/Keyword: Heating Device

Search Result 478, Processing Time 0.022 seconds

The Study of Induction Heating Apparatus with High Efficiency (고효율 유도가열 전열장치 개발에 관한 연구)

  • Cho, Hyun-Seob
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.2
    • /
    • pp.185-189
    • /
    • 2016
  • Energy-saving heat depending on the country's rise in oil prices up to the product development is regarded as pending issues. Therefore, in recent years, been a continuing research studies developed for increasing the economic efficiency and reliability achieved in effectively using the side of the energy for heating using electrical to address these problems and, in particular made active the technology developed for high performance and renal material becoming. This paper is to study the development of highly efficient induction heating device according to the excellent heat transfer characteristics for energy transfer. Induction heating is used as the phenomenon of electromagnetic induction, such as heat transfer conduction or convection of the existing methods are no different. Medium heat without beating is absorbed directly into the water column switched rapidly, have features that heats evenly. In addition, high-frequency induction heating in a variety of frame designs. Heating element heats only when utilized properly, it is possible to heat the focus.

Preparation and Characterization of Carbon Nanofiber Composite Coated Fabric-Heating Elements (탄소나노섬유복합체를 이용한 의류용 직물발열체의 제조 및 특성)

  • Kang, Hyunsuk;Lee, Sunhee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.39 no.2
    • /
    • pp.247-256
    • /
    • 2015
  • This study prepared fabric-heating elements of carbon nanofiber composite to characterize morphologies and electrical properties. Carbon nanofiber composite was prepared with 15wt% PVDF-HFP/acetone solution, and 0, 1, 2, 4, 8, and 16wt% carbon nanofiber. Dispersion of solution was conducted with stirring for a week, sonification for 24 hours, and storage for a month, until coating. Carbon nanofiber composite coated fabrics were prepared by knife-edge coating on nylon fabrics with a thickness of 0.1mm. The morphologies of carbon nanofiber composite coated fabrics were measured by FE-SEM. Surface resistance was determined by KS K0555 and worksurface tester. A heating-pad clamping device connected to a variable AC/DC power supply was used for the electric heating characteristics of the samples and multi-layer fabrics. An infrared camera applied voltages to samples while maintaining a certain distance from fabric surfaces. The results of morphologies indicated that the CNF content increased specifically to the visibility and presence of carbon nanofiber. The surface resistance test results revealed that an increased CNF content improved the performance of coated fabrics. The results of electric heating properties, surface temperatures and current of 16wt% carbon nanofiber composite coated fabrics were $80^{\circ}C$ and 0.35A in the application of a 20V current. Carbon nanofiber composite coated fabrics have excellent electrical characteristics as fabric-heating elements.

A study on the solar assisted heating system with refrigerant as working fluid (냉매를 작동유체로 사용하는 태양열 난방시스템에 관한 연구)

  • Kim, Ji-Young;Ko, Gawng-Soo;Park, Youn-Cheol
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.4
    • /
    • pp.37-44
    • /
    • 2005
  • An experimental study was conducted to analyze performance of a heating system with variation of control logic of the system. The system uses a solar as heat source and composed with heat pump that uses R-22 as working fluid. The difference between the developed system and the commercially available heating system is working fluid. The solar assisted heating system which was widely distributed in the market uses water as a working fluid. It could be freezing in case of the temperature drops down under freezing point. The anti-freezing fluids such as methyl-alcohol or ethylene-glycol are mixed with the water to protect the freezing phenomena. However, the system developed in this study uses a refrigerant as a working fluid. It makes the system to run under zero degree temperature conditions. Another difference of the developed system compare with commercial available one is auxiliary heating method. The developed system has removed an auxiliary electric heater that has been used in conventional solar assisted heating system. Instead of the auxiliary electric heater, an air source heat exchanger which generally used as an evaporator of a heat pump was adapted as a backup heating device of the developed system. As results, an efficiency of the developed system is higher than a solar assisted heat pump with auxiliary electric heater. The merit of the developed system is on the performance increment when the system operates at a lower solar energy climate conditions. In case of the developed system operates at a normal condition, COP of the solar collector driven heat pump is higher than the air source heat exchanger driven heat pump's.

A Study on Joule Heating Simulation Method to Prevent Sensitivity Current Trip of Electric Vehicle Charger (전기자동차 충전기의 누전차단기 감도 전류 Trip 방지를 위한 Joule Heating 시뮬레이션 방안연구)

  • Lee, Beoung-Kug;Eo, Ik-soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.150-159
    • /
    • 2021
  • This study aimed to prevent inconvenience to electric vehicle users caused by an interruption of charging by the earth leakage breaker trip that occurs during charging. As a field case study, it was confirmed that during the battery charger failure type, leakage current measurement experiment by vehicle type, and leakage current breaker operation experiment, the internal temperature of the charger rose to more than 60 ℃ in summer, and the earth leakage circuit breaker stopped charging by tripping at 80% of the rated sensitivity current. Through Joule heating modeling, 32A is energized at the reference temperature of 30 ℃ at the initial time t=0 (s). After t=3000 (s), the heat generated around the charging part of the earth leakage breaker increased to 32.4 ℃. The temperature and time factors correlated with the amount of heat generated according to the statistical verification tool with a correlation coefficient of 0.97. Overall, it is possible to prevent the leakage breaker sensitivity current trip due to an increase in temperature inside the charger in summer by performing a Joule heating simulation according to the material of the charging case, the arrangement of the internal wiring, and the dielectric medium when developing the charger device.

Study on Thermal Performance of the Electric Boiler according to Screw Rotation Speed in Heating Tank (가열탱크 내부 스크류 회전속도에 따른 전기보일러의 열성능에 관한 연구)

  • Kum, Jong-Soo;Kim, Dong-Gyu;Park, Jong-Il
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.11 no.3
    • /
    • pp.13-19
    • /
    • 2015
  • This study was aimed at the heating tank with a screw-rotation device for improving the thermal efficiency of electric boiler. In the proposed system, analysis items were the heater rod surface temperature variation, reaching time for set temperature and thermal efficiency. The following conclusions are obtained from this experimental study. (1) When screw speed increases, the time reaching for set temperature tended to be shorter. (2) When the rotation speed becomes 300 rpm, the surface temperature difference between the right and left heater rod decreases by 49%, from $19.7^{\circ}C$ to $9.7^{\circ}C$ in average. (3) When the rotation speed is over 250 rpm, proposed heating tank structure appeared to be effective in terms of thermal efficiency. Thermal efficiency with the rotation speed 300 rpm is improved by 3.8% compared to the case of rotation speed 0 rpm.

Evaluation of Energy Consumption through Field Measurement at the Apartment Housing Unit Using Dynamic Flow Rate Balancing (실물실험을 통한 다이나믹 유량밸런싱 적용 공동주택 세대의 에너지소비량 평가)

  • Ryu, Seong-Ryong;Cheong, Chang-Heon;Cho, Hyun
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.12 no.4
    • /
    • pp.15-20
    • /
    • 2016
  • Even though the control device of the heating system works well, insufficient water flow rates can degrade control performance and thermal comfort. The water flow rate should be adjusted appropriately to cope with the heating load of each zone. In order to solve these problems, a new balancing concept 'dynamic balancing' was proposed where a balancing valve opening can be automatically modulated according to the heating condition of the room. This study analyzed the effects of dynamic balancing upon indoor thermal environment and energy consumption in a radiant floor heating system through field measurement. Under part-load conditions, the use of a dynamic balancing is a more effective method to reduce energy consumption and to prevent a cavitation. Dynamic balancing is able to help boost the temperature of a room in the start-up period.

General Digital Fuzzy Logic Controller Design For Resonant Inverter (공진형 인버터를 위한 범용 퍼지 논리 제어기 설계)

  • 김태언;김남수;임영도
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.1
    • /
    • pp.60-65
    • /
    • 2004
  • Induction heating system is time varying system around curie point. So, it has many troubles which are system shut down and change the load impedance. In this paper has been designed the parallel resonant inverter which controlling the constant power and tracking the load resonant frequency with PLL is possible, in order to minimize switching losses and solve it's many troubles. The current full-bridge type parallel resonant inverter of an induction heating system was composed of IGBT in switching device. For regulating the output power of an induction heating system, the Fuzzy logic controller is used. The Fuzzy controller makes the control signal for a stable power regulating control and when reference is changed, it is superior to adaptability. It has been evaluated a stable behavior for a noise with switching and a load disturbance.

  • PDF

Performance Evaluation of a Two-Stage Compression Heat Pump System for District Heating (지역난방용 2단 압축 히트펌프 시스템 성능평가)

  • Park, Cha-Sik;Cha, Dong-An;Kwon, Oh-Kyung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.7
    • /
    • pp.585-590
    • /
    • 2012
  • The objective of this study is to investigate the performance of a two-stage compression heat pump system for district heating. The experimental setup of heat pump consists of compressor, condenser, evaporator, expansion device, intercooler, flash tank, oil separator and accumulator. The experimental evaluations on the two-stage compression cycle were carried out under various operating conditions which were heat source temperature, the degree of compressor inlet superheat, and intermediate pressure. The temperature ranges of unutilized energy as the heat source were used in the test conditions. As the heat source temperature increased from $10^{\circ}C$ to $30^{\circ}C$, the COP and heating capacity of the heat pump system increased by 22.6% and 45.8%, respectively. The performance of the two-stage heat pump system increased by 5.2% with the variation of the intermediate pressure in the same heat source temperature conditions.

Analysis of Cooling Characteristics according to Heating Reduction System Displacement of Major Heating Region on Power Inverter (전력 역변환장치 주요발열부의 열 저감 시스템 변위에 따른 냉각 특성해석)

  • Kim, Min-Seok;Kim, Yong-Jae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.2
    • /
    • pp.261-266
    • /
    • 2015
  • Power system for renewable energy is composed of module, transform DC power into AC power inverter, control power flow and device for a charge of the grid-connected. Power system for renewable energy produce the most DC power, when this system is much insolation in summer and daytime. But if the certain temperature rises above, the essential grid-connected power inverter is take a nose dive. There, in this paper, we propose an improved reduction of heating system. In addition, selection of the most serious heat region and through analysis of temperature characteristics according to location and distance derive the optimal model.

Thermal Conductivity Analysis of Heating Rollers for Cable Low Dust POD Production (저분진 케이블 POD 생산을 위한 히팅 롤러의 열전도 분석)

  • Song, Young-Jun;Lim, Jong-Hak;Byun, Young-il;Hong, Seong-Min;Jeong, Young-Hwan;Park, Jang-Yong;Song, Chul Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.1
    • /
    • pp.28-33
    • /
    • 2022
  • The heating roller of an actual pulse output device (POD) production facility is composed of a steel roller and a rubber roller. The time to reach a specific temperature and the temperature distribution on the roller surface were analyzed and compared according to the change in the number of cartridge heaters inside the heating roller. In this analysis, a steady-state thermal analysis of a steel roller was performed for the cases of a 5-cartridge heater and 9-cartridge heater. Finite element analysis was applied with reference to the surface temperature data of the heating roller during operation and the calorific value of the cartridge heater. Using the 9-cartridge heater, faster target temperature achievement and more uniform temperature distribution were confirmed than for the 5-cartridge heater.