• 제목/요약/키워드: Heat-treatment deformation

검색결과 295건 처리시간 0.037초

GMA용접 중 콘택트팁의 미세조직과 경도변화 (Variation of Microstructure and Hardness of Contact Tips during GMA Welding)

  • 김남훈;김가희;김희진;유회수;고진현
    • Journal of Welding and Joining
    • /
    • 제22권1호
    • /
    • pp.43-49
    • /
    • 2004
  • Contact tip is located so near to welding arc that it is heated to high temperature during long time welding. In such a situation, tip changes in its microstructure and in turn its mechanical properties. This study was intended to investigate those changes by using simulated heat treatment. As a result of this study, it was confirmed that tip of Cu-P alloy hardened with severe cold deformation lose its initial hardness to a large extent within 60 min due to the occurrence of rapid recrystallization while that of Cu-Cr composition hardened by proper aging treatment can preserve its intial hardness for about 1,000 min or longer. Based on these results, suggested was a guideline that can classify contact tips into two different grades: deformation-hardened type and precipitation-hardened type. Following a guideline, a tip with Cu-Cr composition can be classified into the deformation-hardened type if it is in the over-aged condition. Such a guideline is well described.

Al-Zn-Mg-Sc 알루미늄 합금 볼트 성형에 관한 연구 (A Study on Forming of Al-Zn-Mg-Sc Aluminum Alloy Bolts)

  • 윤덕재;함승연;이용신
    • 소성∙가공
    • /
    • 제21권7호
    • /
    • pp.447-452
    • /
    • 2012
  • This paper is concerned with forming of Al-Zn-Mg-Sc aluminum alloy bolts, focusing on the effects of heat treatment and age-hardening on the formability and ductile damage evolution. Both experimental and finite element studies were performed. From the experiments, it is observed that the heat treatment or the normalization of Al-Zn-Mg-Sc aluminum alloy increases its formability dramatically resulting in successful bolt forming, while the effects of age-hardening at room temperature on the stress-strain relationship and formability are not very critical. Deformation characteristics such as distribution of effective stress and strain, material flow, and ductile damage evolution during bolt forming are examined using a commercial finite element package, Deform-2D. It should be noted that the extrusion load predicted by the finite element method matches well the experiment results. The finite element predictions on the deformation characteristics support the experimental observations such as fracture of bolt head flange, material flow, and distribution of hardness.

코깅토크 DC성분 저감을 위한 모터 철심 열처리 (Heat Treatment of Stator Core for Reduction of DC-Bias of Cogging Torque)

  • 하경호;김지현;권오열;김재관;임양수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.695-696
    • /
    • 2008
  • This paper deals with the reduction of DC component of cogging toruqe by using the heat treatment of the stator core. The stator core is made of electrical steel sheared by the punching die. From the punching process, large mechanical stress at the edge of stator tooth induces significant plastic and elastic deformation and influences magnetic properties. Then, these phenomenon in the sheared region has influence on the magnetic unbalance in the air-gap of motor. This paper investigated the effect of the punching process on the magnetization process and the mechanical deformation and proposed the stress relief annealing method for the reduction of friction torque among one of motor characteristics.

  • PDF

SCM415강의 동적 변형거동에 미치는 페라이트 결정립크기 변화에 관한 연구 (A Study of Dynamic Deformation Behaviors of SCM415 steel with the Change of Ferritic Grain Size)

  • 김헌주;박무용
    • 열처리공학회지
    • /
    • 제20권1호
    • /
    • pp.22-30
    • /
    • 2007
  • Effects of ferrite grain size on static and dynamic deformation behaviors of SCM415 stels were investigated in this study. Dynamic torsional test was conducted using torsional Kolsky bar with the strain rate of $1.6{\times}10^3/s$. Specimens with three different grain size of ferrite, $4.6{\mu}m$, $11{\mu}m$, $35.5{\mu}m$ were used. Dimple fracture mode of the dynamic test specimens showed adiabatic shear bands on the beneath of fracture surface. Increased uniform elongation and decreased non-uniform elongation appeared as grain size of ferrite decreased in dynamic torsional test. However, shear strength was independent on grain size of ferrite.

고온변형 중의 AZ80 마그네슘합금의 집합조직 형성거동에 영향을 미치는 변형속도의 영향 (The Effect of Strain Rate on Texure Formation Behaviors in AZ80 Magnesium Alloy)

  • 배상대
    • 열처리공학회지
    • /
    • 제33권6호
    • /
    • pp.296-302
    • /
    • 2020
  • Magnesium alloys have been rapidly attracting as lightweight structural material in various industry fields because of having high specific strength and low density. It is well known that the crystallographic texture plays an important role in improvement of poor room temperature ductility of magnesium alloys. In this study, high-temperature plane strain compression deformation was conducted on extruded AZ80 magnesium alloy at 723K by varying the strain rates ranging from 5.0×10-3s-1 to 5.0×10-2s-1 in order to investigate the behaviors of texture formation. It was found that texture formation behaviors in three kinds of specimens were affected by continuous and discontiuous deformation mechanism.

비대칭 압연한 AA 3003 합금의 조직 변화 (Texture of Asymmetrically Rolled AA 3003 Aluminum alloy)

  • 사이드무로드 아크라모프;김인수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 추계학술대회 논문집
    • /
    • pp.332-333
    • /
    • 2007
  • The effect of asymmetric rolling on the recrystallization texture of an AA 3003 Aluminum alloy was investigated by X-ray diffraction. It was found that the texture of asymmetrically rolled sheets prior to subsequent heat treatment promoted the formation of the <111>//ND textures, and remained after heat treatment at $275^{\circ}C$ during 20 min in salt bath condition.

  • PDF

유한요소법을 이용한 용접 잔류응력과 열처리 해석 (Analysis of Welding Residual Stresses and Heat Treatment used by Finete Element Method)

  • 이봉열;조종래;문영훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.334-339
    • /
    • 2003
  • The welding residual stress has on important effect on welding deformation, fatigue fracture, buckling strength, brittle fracture, etc. For the purpose of relaxation of welding residual stress, post welding heat treatment is widely used. In this paper, residual stresses were calculated by two dimensional thermal elasto-plastic analysis using finite element method. Heat transfer analysis are performed by transient analysis. Also structure analysis are carried out by of thermal-mechanical coupled analysis. Numerical analysis are used by ANSYS 5.7.

  • PDF

Load capacity simulation of an agricultural gear reducer by surface heat treatment

  • Lee, Pa-Ul;Chung, Sun-Ok;Choi, Chang-Hyun;Joo, Jai-Hwang;Rhee, Joong-Yong;Choi, Young-Soo;Ha, Jong-Woo;Park, Young-Jun;Hong, Sun-Jung;Kim, Yong-Joo
    • 농업과학연구
    • /
    • 제43권4호
    • /
    • pp.656-664
    • /
    • 2016
  • Gear reducers are widely used for various agricultural machinery applications such as greenhouses, tractors, and agricultural vehicles. However, thermal deformation and surface pitting at gear tooth flank frequently occur in gear reducers due to high torque. Thus, surface heat treatment of gears is required to improve wear and fatigue resistance. The objective of this study was to simulate the load capacity of the agricultural gear reducer. The simulation was performed for the following three surface heat treatment methods: untreated gears, nitriding heat treatment, and induction hardening method, those mostly used for agricultural gear reducers. The load capacity of the gear reducer was simulated using the safety factor, limit bending stress, and limit contact stress of the gear. The simulation of the load capacity was conducted using KISSsoft commercial software for gear analysis. The main results of simulation test were as follows: first, the nitriding heat treatment resulted in the highest safety factor for bending stress, which was increased about 77% from those of the untreated gears. Second, the induction hardening was the highest safety factor for contact stress, which was increased about 150% from those of the untreated gears. The safety factor for contact stress of the induction hardening was increased about 64% from those of the nitriding heat treatment. The study result suggested that the surface heat treatments could enhance load capacity and that the method of surface heat treatment should be determined based on simulation results for appropriate use scenarios.

비정질 $AI_{85}Ni_{10}Y_{5}$ 합금 리본의 벌크화와 어닐링에 따른 기계적 특성 (Bulk Processing of an Amorphous $AI_{85}Ni_{10}Y_{5}$ Alloy Ribbon and Mechanical Properties by Annealing Treatment)

  • 고병철;김종현;유연철
    • 소성∙가공
    • /
    • 제8권6호
    • /
    • pp.626-633
    • /
    • 1999
  • $Al_{85}Ni_{10}Y_5$ (at. %) amorphous alloy ribbons have been produced by rapidly solidification process and consolidated by the conventional powder metallurgy method. The grains with ∼90 nm were obtained in the Al85Ni10Y5 alloy extrudates by hot-pressing followed by hot-extusion. To investigate the effect of heat treatment on microstructural change of the extrudates, heat treatment was carried out from 200℃ to 400℃ at the step of 50℃. In addition, mechanical properties of the extrudates were analysed from torsion test at the temperature range or 400∼500℃ under a strain rates of 0.2, 0.5, and 1.0/sec. The extrudates showed a flow stress of ∼190 MPa and low elongation of ∼150% at 400℃, contributing to the enhancement of ductility and hardness for extrudates. Also, grain boundary sliding was occurred in the $Al_{85}Ni_{10}Y_5$ alloy during hot deformation.

  • PDF

Fe-30%Ni-0.35%C 합금에서 Ausformed Martensite의 기계적 성질에 미치는 Tempering처리의 영향 (Effect of Tempering Treatment on Mechanical Properties of Ausformed Martensite in Fe-30% Ni-0.35%C Alloy)

  • 이인기;이규복;김학신
    • 열처리공학회지
    • /
    • 제7권1호
    • /
    • pp.44-52
    • /
    • 1994
  • In order to investigate the effect of tempring treatment on the mechanical properties of ausformed martensite in Fe-30%Ni-0.35%C alloy, the hardness, yield strength and elongation were examined by tensile test. 1. The strength of deformed austenite in Fe-30%Ni-0.35%C alloy was increased due to the work hardening induced from the dislocation density increased during deformation. The strength of ausformed martensite was increased because of defects inherited from deformed austenite by martensitic transformation. 2. The ductility of ausformed martensite was shown a nearly constant values independent of deformation degrees because of the interaction of multiple factors such as increased retained austenite, formation of void and decrement of twin in ausformed martensite. 3. The strength of ausformed martensite by tempering treatment was shown a little decrement up to $340^{\circ}C$, especially showed remarkable softening resistance in higher deformation degrees. 4. Virgin martensite and ausformed martensite were shown a maximum yield strength by clustering in tempering at $100^{\circ}C$ and above $100^{\circ}C$, yield strength was very small decreased due to the decrement of solute carbon by the destruction of clustering. 5. The decomposition of retained austenite was not shown up to $450^{\circ}C$ in ausformed martensite with tempering treatment, and the matrix was rapidly softening because of the decomposition of martensite and the formation of reversed austenite with tempering above $400^{\circ}C$.

  • PDF