• Title/Summary/Keyword: Heat-pressed ceramics

Search Result 22, Processing Time 0.017 seconds

Characteristics of Thermal Oxidation on Hot-Pressed Pure Yttria Ceramics (고온가압으로 소결한 고순도 이트리아 세라믹 소결체의 산화반응 특성)

  • Choi, Jinsam;Shin, Dong Woo;Bae, Won Tae
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.3
    • /
    • pp.180-185
    • /
    • 2013
  • We investigated the characteristics of hot-pressed pure yttria ceramics, and annealed them in an oxidation atmosphere. Regardless of the heat treatment in the oxidation atmosphere, XRD analysis showed that all the samples had a $Y_2O_3$ phase without structural change. Even though the color variation of the hot-pressed $Y_2O_3$ ceramics was due to the sintering temperatures, the oxidation process turned the color of the $Y_2O_3$ ceramics into white. The color change during oxidation treatment appears to be related to oxygen defects. In addition, oxygen defects also affected the weight change and microstructure of the $Y_2O_3$ ceramics. The $Y_2O_3$ ceramic sintered at $1600^{\circ}C$ had a $5.03g/cm^3$ density, which is close to the theoretical density of $Y_2O_3$. As the sintering temperature increased, small homogeneous grains grew to large grains which affected the Vickers hardness. $Y_2O_3$ ceramics hot-pressed at $1600^{\circ}C$ and annealed at $1200^{\circ}C$ had a flexural strength of 140MPa.

A STUDY ON THE FLEXURAL STRENGH OF HEAT-PRESSED CERAMICS ACCORDING TO SPRUE DESIGNS (주입선 설계에 따른 Heat-pressed ceramic의 파절강도에 관한 연구)

  • Oh, Sang-Chun;Dong, Jin-Keun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.35 no.1
    • /
    • pp.130-143
    • /
    • 1997
  • A heat-pressed technique(IPS-Empress, Ivoclar) has been described to construct single unit crown, inlay/onlay and veneers using a partially pre-cerammed and pre-colored glass-leucite ingot that has the greateast strength by the combination of heat-pressed procedure through the smalldiameter sprue and heat treatment procedure. The purpose of this study was to evaluate the flexure strength of a heat-pressed ceramic material(IPS-Empress) without simulated firing treatments according to pontic designs. Two groups of 9 disks(1.4mm thick, 14mm in diameter) each using two types of sprues with different diameters($({\Phi}2.8\;,{\Phi}1.8)$) and numbers were prepared. The specimens were mounted in the testing jig. The flexural strengths were determined, by means of the bi-axial bending test, by loading the center of disk to failure using a universal testing machine(Zwick 145141, Zwick, Germany) at a cross-head speed of 1.0 mm/min. The means flexural strength value of one group using a sprue with ${\Phi}2.8$ was $140.4{\pm}8.0Mpa$. That of the other group using two sprues with ${\Phi}1.8$ was $151.8{\pm}10.3Mpa$. After analysis, results showed that there was a statistical difference between groups(t=2.33m p<0.05). No clnical implications were drawn from these data because of absence of simulated firing treatment.

  • PDF

An in-vitro wear study of human enamel opposing heat-pressed ceramics (2종의 열가압 도재와 법랑질 간의 마모에 관한 연구)

  • Park, Chan-Yong;Jeon, Young-Chan;Jeong, Chang-Mo;Yun, Mi-Jung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.1
    • /
    • pp.21-28
    • /
    • 2009
  • Purpose: The purpose of this study was to compare the wear characteristics of human enamel opposing 2 heat-pressed ceramics (e.max Press and Empress Esthetic), conventional feldspathic porcelain (Ceramco 3) and type III gold alloy. Material and methods: Intact cusps of extracted premolars were used for enamel specimens. Five disk samples were made for each of two heat-pressed ceramics groups, conventional feldspathic porcelain group and type III gold alloy group. Wear tests were conducted in distilled water using a pin-on-disk tribometer. The amount of enamel wear was determined by weighing the enamel specimens before and after wear tests, and the weight was converted to volumes by average density. The wear tracks were analyzed by scanning electron microscopy and surface profilometer to elucidate the wear characteristics. Results: 1. Ceramco 3 led to the greatest amount of enamel wear followed by Empress Esthetic, e.max Press and type III gold alloy. However, there was no significant difference between Ceramco 3 and Empress Esthetic (P>.05), and there were also no significant differences among Empress Esthetic, e.max Press and type III gold alloy (P>.05). 2. The average surface roughness of e.max Press after wear test was smallest followed by Empress Esthetic and Ceramco 3, but there was no significant difference between Empress Esthetic and Ceramco 3 (P>.05). 3. There were no significant differences among the depth of wear tracks of all the groups (P>.05). The group that showed the largest width of wear track was Ceramco 3 followed by Empress Esthetic, e.max Press and type III gold alloy. However, there was no significant difference between e.max Press and Empress Esthetic (P>.05), and there was also no significant difference between Empress Esthetic and Ceramco 3 (P>.05). Conclusion: Within the limits of this study, heat-pressed ceramics were not more abrasive than conventional feldspathic porcelain.

A Study on Shear Bond Strength of Heat Press Ceramic to Non Precious Porcelain Metal (도재용착용 비귀금속과 열가압성형도재의 전단결합강도 연구)

  • Kim, Seong-Soo;Kim, Wook-Tae;Lee, Myung-Kon
    • Journal of Technologic Dentistry
    • /
    • v.33 no.1
    • /
    • pp.37-45
    • /
    • 2011
  • Purpose: Heat pressed ceramics, used for all ceramic restorations, have the additional advantage of being technically less change through using of the lost-wax technique. Conceptually, combining the ceramic with the clinically proven reinforcing ability of a metal framework would be advantageous; however, cause of mismatching of fusion between ceramics and metal frameworks which from differences of casting temperature and coefficient of thermal expansion, pressed ceramics could not be used with a metal framework. The purpose of this study was to compare shear bond strength of press-to metal ceramic to porcelain fused non precious metal and feldspatic porcelain fused non precious metal. Methods: The 30 metal specimens were casted in a porcelain fused non precious metal nickel-chromium alloy. They were divided into 3 groups by surface treatment and applied ceramic: $125{\mu}m$ aluminium oxide sandblasting and veneered feldspatic porcelain (group FP), $125{\mu}m$ aluminium oxide sandblasting and had press-to-metal ceramic applied (group PC), porcelain bonder (gold bonder) fused on surface of metal specimens and had press-to-metal ceramic applied (group PCG). In each group 10 metal specimens were used. The press-to-metal ceramic applied 20 specimens had ash-free wax pattern applied, the metal-wax complexes invested, and were pressed with heat press ceramic. All specimens were subjected to shear bond strength test at a crosshead speed of 1.0 mm/min. Results: The results of measured in Mean SD and data were analyzed by one-way AVOVA (p= .05) and Tukey HSD test (p= .05).: group FP $16.090{\pm}1.841$ MPa, group PC $12.620{\pm}1.8256$ MPa, group PCG $10.920{\pm}0.9283$, significant differences between all groups (p < .05). Significant differences were found in each between group FP and group PC, group FP and group PCG (p < .05). Conclusion: The shear bond strength of press-to-metal ceramic to porcelain fused non precious metal was described higher in unused gold bonder group than used gold bonder groups.

Adhesion between heat-pressed lithium disilicate veneer and zirconia framework: Shear bond strength evaluation (열가압 리튬 디실리케이트 전장도재와 지르코니아 하부구조의 전단결합강도 평가)

  • Kim, Jae-Hong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.3
    • /
    • pp.335-341
    • /
    • 2020
  • This study examined the shear bond strength between the zirconia core and pressed lithium disilicate veneering ceramics. The Schmitz-Schulmeyer test method was used to investigate the core-veneer shear bond strength of industrially manufactured zirconia core ceramic (Zirtooth, HASS, Gangneung, Korea) and pressed veneer ceramic (IPS e.max Zirpress, Vita PM9, GC Initial IQ, HASS Rosetta SM) (N=40). Data were statistically analyzed using one-way ANOVA and Tukey's test (a=0.05). The fractured surfaces of the specimens were examined to determine the failure pattern using a digital microscope. The mean ± SD shear bond strength in MPa were 16.69±3.11, 14.21±3.63, 11.17±2.92, and 27.90±5.71 for IPS e.max Zirpress, VITA PM9, GC Initial IQ, and HASS Rosetta SM, respectively. The average shear bond strength was largest for HASS Rosetta SM, followed by IPS e.max Zirpress, Vita PM9, and GC Initial IQ(p<0.05). The digital microscopy examination of the fracture surface showed adhesive and cohesive failure in pressed lithium disilicate veneering ceramics. The use of lithium disilicate veneer ceramic produced a significantly higher shear bond strength.

High-Strength Mg-PSZ of Fine Grains Containing TiC Particles

  • Joon Hyuk Jang;Jaehyung Lee
    • The Korean Journal of Ceramics
    • /
    • v.1 no.4
    • /
    • pp.214-218
    • /
    • 1995
  • Partially stabilized zironia with magnesia (Mg-PSZ) is known as one of the toughest monolithic ceramics. However, the very large grain sizes obtained after sintering at a high solution-heat treatment temperature in the cubic region of the phase diagram limit the strength of this material rather modest. In this study fine-grained Mg-PSZ materials were fabricated by adding TiC particles as a dispersed phase. Samples were hot-pressed at $1750^{\circ}C$ and then annealed at $1420^{\circ}C$ for various times. Grain growth was retarded severely by the TiC particles resulting in grain sizes smaller by more than one order of magnitude than those of PSZ without TiC. The fine-grained microstructure lead to doubly-increased fracture strength while maintaining the same level of high fracture toughness as that of conventional Mg-PSZ without TiC particles.

  • PDF

Studies on Fabrication of Translucent Eletrooptic Ceramics (투광성 전기 광학용 소자의 제조에 관한 연구)

  • 김재육;이태근;임응극
    • Journal of the Korean Ceramic Society
    • /
    • v.22 no.6
    • /
    • pp.71-79
    • /
    • 1985
  • In order to fabricate the translucent electrooptic ceramics which are comparable to PLZT, $PNZT^*$ has been prepared from aqueous solutions of their itrate and chlorides. In the quarternary $Pb^{1-x} Nd_x(Zr_{0.63} Ti_{0.37})^{1-\frac{x}{4}O_3$, (PNZT) $(0.02\le x\ge 0.12)$ system cold-pressed PNZT slugs were sintered in $O_2$ in pt-crucible for 45 min. at 118$0^{\circ}C$ and were then heat-treated in air for 60 hrs. at 120$0^{\circ}C$ in Al2O3 crucibles containing $PbZrO_3$ powder to control the atmosphere. Mean particle size of calcined PNZT powders was 0.1~0.15${\mu}{\textrm}{m}$. It was found that the maximum value of optical transmission has been revealed at 6~8 at. % $Nd_2O_3$ added body and that their dielectric constant has been decreased as the frequency increased. Curic temperature has been varied inversely with $Nd^{3+}$ ion content up to 8 at. % and become constant above this value. $^*Pb_{1-x}Nd_x(Zr_{0.63} Ti_{0.37})_{1-2/4}O_3$

  • PDF

Fabrication and Properties of Reactively Hot Pressed HfB2-HfC Ultra-High Temperature Ceramics

  • Lee, Seung-Jun;Seong, Young-Hoon;Baek, Seung-Su;Kang, Eul-Son;Kim, Do-Kyung
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.6
    • /
    • pp.534-539
    • /
    • 2010
  • $HfB_2$-HfC composites were prepared by reactive hot pressing using Hf and $B_4C$ at temperatures of 1800 and $1900^{\circ}C$ for 60 min under 32 MPa in an Ar atmosphere. The reaction sequences of the $HfB_2$-HfC composite were studied through series of pressureless heat treatments ranging from 800 to $1600^{\circ}C$. The effect of size reduction of the starting powders on densification was investigated by vibration milling. Fully dense $HfB_2$-HfC composites were obtained by size reduction of the starting powders via vibration milling. The oxidation behaviour of the $HfB_2$-HfC composites at $1500^{\circ}C$ in air showed formation of a non-protective $HfO_2$ scale with linear mass gain. Examination of the mechanical properties showed that particle size reduction via vibration milling also led to improved flexural strength, hardness and fracture toughness.

Shear bond strength in bilayer metal-heat pressed glass ceramic structure (열가압 방식의 금속-유리도재 이중 구조물의 전단결합강도에 대한 연구)

  • Lee, Kyungeun;Park, Jin-Young;Kim, Ji-Hwan;Kim, Woong-Chul
    • Journal of Technologic Dentistry
    • /
    • v.39 no.2
    • /
    • pp.101-107
    • /
    • 2017
  • Purpose: The purpose of this study was to compare the shear bond strength of the metal-heat pressed glass ceramic bilayer structure. Methods: Metal framework specimens were prepared and surface is spreaded opaque(IPS InLine system opaque, IvoclarVivadent, Liechtenstein). There were 10 specimens for each bilayer dental ceramic group. The first group was porcelain fused metal, Press on metal IPS Inline press group, and press on metal HASS prototype group. Specimens measured for the shear bond strength on Schwickerath test by Instron universal testing machine(Instron3345, Instron Corp., USA). Mean average bond strength values of each specimen group were analyzed using a one-way ANOVA analysis of variance Saphiro-wilk's test. Statistical analysis were performed using IBM SPSS 23.0(IBM Co., Armonk, USA) Results: $RMS{\pm}SD$ The highest mean average HASS POM showed a bond strength value ($47.55{\pm}12.80Mpa$). The lowest mean average values Porcelain fused metal ($33.30{\pm}2.00Mpa$). Independent t-test was conduct to analysis the significant difference (p<0.05) (Table 3). Conclusion: Three kinds of Metal/ glass bilayer dental ceramics bond strength were clinical acceptability. Especially, as lithium disilicate containing represents higher bond strength.

Fabrication of Hydroxyapatite Compacts with Polymethyl Methacrylate (PMMA를 결합제로 한 수산화아파타이트 성형체의 제조)

  • Ryu, Su-Chak;Yoon, Su-Jong
    • Korean Journal of Materials Research
    • /
    • v.16 no.4
    • /
    • pp.272-275
    • /
    • 2006
  • In order to evaluate the possibility of Polymethyl methacrylate (PMMA) as a binder on hydroxyapatite (HAp) which has good biocompatibility, the properties of HAp compacts with PMMA were examined. When adding 50 wt% of PMMA on HAp and pressed, the compression strength and the hardness of the compacting body were 168MPa and 55 Hv, respectively, and the strength of compacts was higher than that of cortical bone and the hardness was similar to the value of molar. We demonstrated that HAp ceramics can be obtained without additional heat treatment and machining of the ceramic was feasible. Therefore, the HAp compacts have potential to apply to implant or artificial bone after the clinical trials guarantees biocompatibility of it.