• Title/Summary/Keyword: Heat-curing denture base resin

Search Result 36, Processing Time 0.025 seconds

EFFECT OF SURFACE DESIGN ON BOND STRENGTH OF RELINING DENTURE RESIN (결합면 형태가 이장용 레진의 결합강도에 미치는 영향)

  • Park Eun-Ju;Jin Tai-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.2
    • /
    • pp.167-174
    • /
    • 2004
  • Statement of problem: Removable partial denture and complete denture often require denture base relines to improve the fit against the tissue-bearing mucosa because of gradual changes in edentulous ridge contours and resorption of underlying bone structure. Purpose: This study was performed to investigate the effect of surface design on bond strength of relining denture base resins to denture base acrylic resin. Materials and method: Heat curing resin(Lucitone 199, Dentsply U.S.A. and Vertex, Dentimex, Holland), self curing resin(Tokuso rebase, Tokuyama, Japan), and visible light curing resin(Triad, Dentsply, U.S.A.) were used in this study. The surface designs were classified as butt, bevel and rabbet joint and the bond strengths were measured by Universial Testing Machine (Zwick 2020, Zwick Co., Germany). Results and Conclusion: The obtained results from this study were as follows ; 1. The bond strength of Vertex resin was higher than those of Tokuso rebase and Triad. 2. The bond strength of rabbet and bevel joint was higher than that of butt joint. 3. The failure mode of Triad and Tokuso rebase was mainly adhesive, but cohesive failure was shown mainly in vertex.

Shear bond strength between CAD/CAM denture base resin and denture artificial teeth when bonded with resin cement

  • Han, Sang Yeon;Moon, Yun-Hee;Lee, Jonghyuk
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.5
    • /
    • pp.251-258
    • /
    • 2020
  • PURPOSE. The bond strengths between resin denture teeth with various compositions and denture base resins including conventional and CAD/CAM purposed materials were evaluated to find influence of each material. MATERIALS AND METHODS. Cylindrical rods (6.0 mm diameter × 8.0 mm length) prepared from pre-polymerized CAD/CAM denture base resin blocks (PMMA Block-pink; Huge Dental Material, Vipi Block-Pink; Vipi Industria) were bonded to the basal surface of resin teeth from three different companies (VITA MFT®; VITA Zahnfabrik, Endura Posterio®; SHOFU Dental, Duracross Physio®; Nissin Dental Products Inc.) using resin cement (Super-Bond C&B; SUN MEDICAL). As a control group, rods from a conventional heat-polymerizing denture base resin (Vertex™ Rapid Simplified; Vertex-Dental B.V. Co.) were attached to the resin teeth using the conventional flasking and curing method. Furthermore, the effect of air abrasion was studied with the highly cross-linked resin teeth (VITA MFT®) groups. The shear bond strengths were measured, and then the fractured surfaces were examined to analyze the mode of failure. RESULTS. The shear bond strengths of the conventional heat-polymerizing PMMA denture resin group and the CAD/CAM denture base resin groups were similar. Air abrasion to VITA MFT® did not improve shear bond strengths. Interfacial failure was the dominant cause of failure for all specimens. CONCLUSION. Shear bond strengths of CAD/CAM denture base materials and resin denture teeth using resin cement are comparable to those of conventional methods.

AN IN VITRO STUDY ON CELLULAR RESPONSE OF SEVERAL DENTURE BASE RESINS (수종 의치상 레진의 세포반응에 관한 연구)

  • Jun Chul-Oh;Vang Mong-Sook
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.30 no.2
    • /
    • pp.247-257
    • /
    • 1992
  • The present study quantitates the in vitro cytotoxicity of a variety of denture base acrylic resins using cell culture techniques combined with image analysis to measure nuclear area and DNA contents. In this study, a comparison was made among direct curing, heat curing and microwave curing resins. The results obtained from this study were as follows : 1. Morphologically, cell process and nucleus became prominent but macroscopic difference according to the resins were nit observed. In addition, increased cellular density around the specimen were observed. 2. In DNA contents measurements, $S-G_2M$ phase cell was 15.47%, 14.58% in control and heat curing resin on 1st day and the others group $21.39\sim33.36%$ were measured. 3. Nuclear area and DNA contents were increased on 3rd day except DNA content of the microwave curing resin group. These results suggest that denture base acrylic resins stimulate gingival fibroblasts in vitro, especially stimulation of direct curing resin is larger and longer than the others.

  • PDF

Effects of Treatment of Silane Coupling Agent in MPS Concentration on the Shear Bond Strength between Self Curing Resins and Heat Curing Resin (Silane coupling agent인 MPS 농도별처리에 따른 열중합 레진과 자가중합 레진 간의 전단결합강도)

  • Choi, Esther;Kwon, Eun-Ja
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.2
    • /
    • pp.344-351
    • /
    • 2015
  • The purpose of this study was to evaluate the effect of the surface treatment of widely used in dental of silane coupling agent concentration on the shear bond strength of denture base resin and self curing resins. Denture base resin surface was treated with silane coupling agent concentration, after self curing resins were injected shear bond strength was measured. The results of silane coupling agent(MPS) concentration on the shear bond strength of Vertex self curing resin showed that the value of 5%, 7% groups were higher than that of other group(P<0.05). Silane coupling agent concentration on the shear bond strength of Kooliner resin showed that the value of 5% was highest(P<0.05). Therefore, we could conclude 5% MPS to strengthen effectively the shear bonding property of denture base resin and self curing resins of this study.

THE LEVEL OF RESIDUAL MONOMER IN INJECTION MOLDED DENTURE BASE MATERIALS

  • Lee Hyeok-Jae;Kim Chang-Whe;Kim Yung-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.3
    • /
    • pp.360-368
    • /
    • 2003
  • Statement of Problem: The residual monomer of denture base materials causes hypersensitivity on oral mucosa and intereferes with the mechanical properties of the cured resin. The amount of residual monomer is influenced by materials, curing cycle, processing method, and etc. Purpose: The aim of this study was to investigate the residual methyl methacrylate(MMA) content of injection molded denture base polymer, and to compare this with the self-cured resin and the conventional compression molded heat-cured resin. Materials and Methods: Disc shaped test specimens (50mm in diameter and 3mm thick) were prepared in a conventional flasking technique with gypsum molding. One autopolymerized denture base resins (Vertex Sc. Dentimex. Netherlands) and two heat-cured denture base resins (Vertex RS. Dentimex. Netherlands, Ivocap. Ivoclar Vivadent, USA) were used. The three types of specimens were processed according to the manufacturer's instruction. After polymerization, all specimens were stored in the dark at room temperature for 7 days. There were 10 specimens in each of the test groups. 3-mm twist drills were used to obtain the resin samples and 650mg of the drilled sample were collected for each estimation. Gas chromatography (Agillent 6890 Plus Gas Chromatograph, Agillent Co, USA) was used to determine the residual MMA content of 10 test specimens of each three types of polymer. Results: The residual monomer content of injection molded denture base resins was $1.057{\pm}0.141%$. The residual monomer content of injection molded denture base resins was higher than that of compression molded heat cured resin ($0.867{\pm}0.169%$). However, there was no statistical significant difference between two groups (p>0.01). The level of residual monomer in self cured resin($3.675{\pm}0.791$) was higher than those of injection molded and compression molded heat cured resins (p<0.01). Conclusion: With respect to ISO specification pass / fail test (2.2% mass fraction) of residual monomer, injection molding technique($1.057{\pm}0.141%$) is a clinically useful and safe technique in terms of residual monomer.

THE EFFECT OF PROCESSING METHOD AND SURFACE DESIGN ON THE TRANSVERSE STRENGTH OF REPAIRED DENTURE BASE RESIN (온성방법과 단면형태가 수종의 의치상 수리레진의 결합강도에 미치는 영향)

  • Kim, Kang-Nam;Bae, Tae-Sung;Han, Jung-Suk
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.34 no.4
    • /
    • pp.665-674
    • /
    • 1996
  • This study was designed to evaluate the effect of processing method and surface design on the transverse strength of repaired denture base resin. Three heat-cured denture base resins(Vertex, Lucitone, Lang), one cold-cured resin(Lang), and one light-cured resin(Dentacolor gingiva material) were used for repair purpose. The specimens for 3-point flexure test were fabricated by five processing methods such as self-curing, pressure pot, boiling water, processing, and light curing. Finally to evaluate the effect of surface designs for repaired resin, three surface designs(butt, bevel, inverse bevel) were tested. Within the limit of this study, following conclusions were drawn. 1. Lucitone denture base material showed highest flexural strength of $131.37{\pm}2.15MPa$, and there were significant differences in stength between Lucitone and other resins. 2. Between two different self curing methods, self curing repair resin, Lang, cured by pressure pot method showed highest flexural strength, $58.49{\pm}4.89MPa$. 3. Among the heat cured repair resins, maximum transverse strength value of $88.69{\pm}16.60MPa$ was recorded in Lucitone group cured by processing method. 4. Inverse bevel joint design showed significantly higher bond strength than butt joint group, Maximum bond strength was $59.36{\pm}1.33MPa$ in inverse bevel joint design group.

  • PDF

Accuracy evaluation of resin complete denture made with glass fiber mesh reinforcement before and after curing (유리섬유 보강재로 제작한 레진의치의 온성 전·후에 따른 정확성 평가)

  • Kim, Dong-Yeon;Jung, Il-Do;Park, Jin-Young;Kang, Seen-Young;Kim, Ji-hwan;Kim, Woong-Chul
    • Journal of Technologic Dentistry
    • /
    • v.39 no.1
    • /
    • pp.25-33
    • /
    • 2017
  • Purpose: The aim of this study was to evaluate accuracy of glass fiber mesh complete denture of before and after curing. Methods: Edentulous model was selected as the master model. Ten study models were made by Type IV stone. Wax complete dentures were produced by the denture base and artificial teeth. CD and GD groups were measured six measurement distance before curing. The wax complete denture was investment after measurement is completed. Using a heat polymerization resin was injected resin. After injecting the resin it was curing. A complete denture was re-measured after curing. The measured data was verified by paired t-test. Results: Overall CD group was larger the value of the measured length. In the CD group, A-D point was larger. The smallest point was the B-D point. However, there was no statistically significant difference only C-D point(p>0.05). In the GD group, A-B point was larger. but B-D point was the smallest. A-D and B-C statistically points showed significant differences(p<0.05). Conclusion: Glass fiber mesh resin complete denture can be clinically applied to the edentulous patient.

BOND STRENGTH BETWEEN COBALT-CHROMIUM ALLOY AND DENTURE BASE RESIN ACCORDING TO ADHESIVE PRIMERS (금속표면처리제에 따른 코발트-크롬 합금과 의치상용 레진의 결합강도)

  • Park, Jong-Il;Kwon, Ju-Hong;Lee, Hae-Hyeung;Cho, Hay-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.2
    • /
    • pp.160-168
    • /
    • 2000
  • This study evaluated the effects of four adhesive metal primers on the shear bond strength of a heat curing denture base resin(Lucitone 199) to cobalt-chromium alloy(Biosil-f). The adhesive metal primers were Cesead Opaque Primer, Metal Primer, MR Bond, and Super-Bond liquid. The metal surface primed or nonprimed was filled with the heat-curing methyl methacrylate resin. The specimens were stored in water at $37^{\circ}C$ for 24 hours and the alternately immersed in water bath at $5^{\circ}C\;and\;55^{\circ}C$ for up to 2,000 thermal cycles. Shear bond strengths were measured using UTM at a crosshead speed of 0.5mm/min. Failure surface were examined under magnifying glasses. All the primers examined improved the shear bond strength between denture base resin and cobalt-chromium alloy compared with nonprimed specimens before thermal cycling. The bond strength of Cesead Opaque Primer was greatest. And after 2,000 thermal cycles, the bond strengths between resin and cobalt-chromium alloy were decreased but the difference between thermal cycling 0 and 2,000 at Cesead Opaque primer and Metal Primer were not significant. This study indicated that Cesead Opaque Primer & Metal Primer is effective primers to obtain higher bond strength between heat cured denture base resin and cobalt-chromium alloy.

  • PDF

Comparison of bond strength between denture base resin and reline resin (의치상 레진과 이장 레진 간의 결합강도 비교)

  • Geum, Young-Hee;Kim, Busob
    • Journal of Technologic Dentistry
    • /
    • v.39 no.3
    • /
    • pp.161-167
    • /
    • 2017
  • Purpose: We compare the bond strength of heat-cured PMMA of Lucitone 199 and QC-20 and Tokuyama Rebase Resin of self-cured resin, which are widely used and well accepted in clinical practice. In order to test the mechanical bonding and chemical bonding, we will compare the bond strength between EstheShot Bright, Smiletone, Repair and Rebase resins. Methods: The denture base resin used in this study was PMMA heat-cured QC-20 and Lucitone 199, polyamide resin EstheShot Bright, Smiletone. And Two types of self-curing Rapid Repair and Tokuyama Rebase were used as resection resins. To measure the bond strength, the denture specimens were fabricated in the size of $10{\times}64{\times}3.5mm$ as instructed by the manufacturer. A surface treatment agent was applied to the cut surfaces of each denture specimen, and the specimens were placed in a preformed silicone mold, and autoclaved excimer resins were prepared. The bending strength of the fabricated specimens was measured using a universal testing machine (STM-5, United Calibration Co., U.S.A.) to measure the three-point bending strength. Results: In both polycarbonate and polyacetal resin, a special resin surface treatment agent showed higher bonding strength than the resin surface treatment agent(p<0.05). Regardless of the type of surface treatment, polycarbonate showed higher bond strength than polyacetal resin(p<0.05). Conclusion: It is considered desirable to use a special surface treating agent for the thermoplastic denture base resin such as polycarbonate and polyacetal resin.

Wettability of denture relining materials under water storage over time

  • Jin, Na-Young;Lee, Ho-Rim;Lee, Hee-Su;Pae, Ahran
    • The Journal of Advanced Prosthodontics
    • /
    • v.1 no.1
    • /
    • pp.1-5
    • /
    • 2009
  • STATEMENT OF PROBLEM. Poor wettability of denture relining materials may lead to retention problems and patient discomfort. PURPOSE. Purpose of this study is to compare and evaluate wettability of nine denture relining materials using contact angle measurements under air and water storage over time. MATERIAL AND METHODS. Nine denture relining materials were investigated in this study. Two heat-curing polymethyl-methacrylate(PMMA) denture base materials: Vertex RS, Lang, one self-curing polyethyl-methacrylate(PEMA) chairside reline resin: Rebase II, six silicone relining materials: Mucopren soft, Mucosoft, $Mollosil^{{R}}$ plus, Sofreliner Touch, GC $Reline^{TM}$ Ultrasoft, Silagum automix comfort were used in this experiment. Contact angles were measured using high-resolution drop shape analysis system(DSA 10-MK2, KRUESS, Germany) under three conditions(in air after setting, 1 hour water storage, and 24 hours water storage). Nine materials were classified into three groups according to material composition(Group 1: PMMA, Group 2: PEMA, Group 3: Silicone). Mean values of contact angles were compared using independent samples t-test and one-way ANOVA, followed by a Scheffe's post hoc analysis($\alpha$=0.01). RESULTS. Contact angles of materials tested after air and water storage increased in the following order: Group 1(PMMA), Group 2(PEMA), Group 3(Silicone). Heat-cured acrylic denture base resins had more wettability than silicone relining materials. Lang had the highest wettability after 24 hours of water storage. Silicone relining materials had lower wettability due to their hydrophobicity. Wettability of all denture relining materials, except Rebase II and $Mollosil^{{R}}$ plus, increased after 24 hours of water storage. CONCLUSIONS. Conventional heat-cured resin showed the highest wettability, therefore, it can be suggested that heat-cured acrylic resin is material of choice for denture relining materials.