• 제목/요약/키워드: Heat transfer mechanism

검색결과 277건 처리시간 0.028초

Conceptual Design of Passive Containment Cooling System for Concrete Containment

  • Lee, Seong-Wook;Baek, Won-Pil;Chang, Soon-Heung
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1995년도 추계학술발표회논문집(1)
    • /
    • pp.358-363
    • /
    • 1995
  • A study on passive cooling systems for concrete containment of advanced pressurized water reactors has been performed. The proposed passive containment cooling system (PCCS) consist of (1) condenser units located inside containment, (2) a steam condensing pool outside containment at higher elevation, and (3) downcommer/riser piping systems which provide coolant flow paths. During an accident causing high containment pressure and temperature, the steam/air mixture in containment is condensed on the outer surface of condenser tubes transferring the heat to coolant flowing inside tubes. The coolant transfers the heat to the steam condensing pool via natural circulation due to density difference. This PCCS has the following characteristic: (1) applicable to concrete containment system, (2) no limitation in plant capacity expansion, (3) efficient steam condensing mechanism (dropwise or film condensation at the surface of condenser tube), and (4) utilization of a fully passive mechanism. A preliminary conceptual design work has been done based on steady-state assumptions to determine important design parameter including the elevation of components and required heat transfer area of the condenser tube. Assuming a decay power level of 2%, the required heat transfer area for 1,000MWe plant is assessed to be about 2,000 ㎡ (equivalent to 1,600 of 10 m-long, 4-cm-OD tubes) with the relative elevation difference of 38 m between the condenser and steam condensing pool and the riser diameter of 0.62 m.

  • PDF

NANOTECHNOLOGY FOR ADVANCED NUCLEAR THERMAL-HYDRAULICS AND SAFETY: BOILING AND CONDENSATION

  • Bang, In-Cheol;Jeong, Ji-Hwan
    • Nuclear Engineering and Technology
    • /
    • 제43권3호
    • /
    • pp.217-242
    • /
    • 2011
  • A variety of Generation III/III+ water-cooled reactor designs featuring enhanced safety and improved economics are being proposed by nuclear power industries around the world in efforts to solve the future energy supply shortfall. Thermal-hydraulics is recognized as a key scientific subject in the development of innovative reactor systems. Phase change by boiling and condensation in the reverse process is a highly efficient heat transport mechanism that accommodates large heat fluxes with relatively small driving temperature differences. This mode of heat transfer is encountered in a wide spectrum of nuclear systems,and thus it is necessary to determine the thermal limit of water-cooled nuclear energy conversion in terms of economic and safety. Such applications are being advanced with the introduction of new technologies such as nanotechnology. Here, we investigated newly-introduced nanotechnologies relevant to boiling and condensation in general engineering applications. We also evaluated the potential linkage between such new advancements and nuclear applications in terms of advanced nuclear thermal-hydraulics.

초음파진동에 의한 음향유동을 활용한 냉각 메카니즘의 실험 및 이론적 연구 (Experimental and Analytical Study of a Cooling Mechanism Using Acoustic Streaming by Ultrasonic Vibrations)

  • Loh, Byoung-Gook;Lee, Dong-Ryul
    • 한국소음진동공학회논문집
    • /
    • 제13권9호
    • /
    • pp.694-702
    • /
    • 2003
  • 초음파 진동에 의한 음향유동을 활용한 냉각 메카니즘과 대류열전달 향상에 관한 연구가 실험 및 이론적으로 수행되었다. 음향유동 형태와 열전달 특성이 제시되었다. Nyborg 이로에 의한 가열판의 이론적 과도 온도분포는 실험에 의해 측정되었다. 10$\mu\textrm{m}$의 진폭으로 4분안에 3$0^{\circ}C$의 온도강하가 발생하였다. 진폭을 25$\mu\textrm{m}$로 증가시킴에 따라 본 연구의 실험장비에서 습득할 수 있는 최대 온도강하인 4$0^{\circ}C$를 얻을 수 있었다. 실험에서 측정할 수 있었던 주파수 28.4kHz에서의 진폭 25$\mu\textrm{m}$ 조건에서의4$0^{\circ}C$의 온도강하를 이론적 열전달 해석으로도 검증할 수 있었다.

Design of Cooling Channels of Preburners for Small Liquid Rocket Engines with Computational Flow and Heat Transfer Analysis

  • Moon, In-Sang;Lee, Seon-Mi;Moon, Il-Yoon;Yoo, Jae-Han;Lee, Soo-Yong
    • Journal of Astronomy and Space Sciences
    • /
    • 제28권3호
    • /
    • pp.233-239
    • /
    • 2011
  • A series of computational analyses was performed to predict the cooling process by the cooling channel of preburners used for kerosene-liquid oxygen staged combustion cycle rocket engines. As an oxygen-rich combustion occurs in the kerosene fueled preburner, it is of great importance to control the wall temperature so that it does not exceed the critical temperature. However, since the heat transfer is proportional to the speed of fluid running inside the channel, the high heat transfer leads to a trade-off of pressure loss. For this reason, it is necessary to establish a certain criteria between the pressure loss and the heat transfer or the wall surface temperature. The design factors of the cooling channel were determined by the computational research, and a test model was manufactured. The test model was used for the hot fire tests to prove the function of the cooling mechanism, among other purposes.

Selective Production of Aromatic Aldehydes from Heavy Fraction of Bio-oil via Catalytic Oxidation

  • Li, Yan;Chang, Jie;Ouyang, Yong;Zheng, Xianwei
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권6호
    • /
    • pp.1654-1658
    • /
    • 2014
  • High value-added aromatic aldehydes (e.g. vanillin and syringaldehyde) were produced from heavy fraction of bio-oil (HFBO) via catalytic oxidation. The concept is based on the use of metalloporphyin as catalyst and hydrogen peroxide ($H_2O_2$) as oxidant under alkaline condition. The biomimetic catalyst cobalt(II)-sulfonated tetraphenylporphyrin ($Co(TPPS_4)$) was prepared and characterized. It exhibited relative high activity in the catalytic oxidation of HFBO. 4.57 wt % vanillin and 1.58 wt % syringaldehyde were obtained from catalytic oxidation of HFBO, compared to 2.6 wt % vanillin and 0.86 wt % syringaldehyde without $Co(TPPS_4)$. Moreover, a possible mechanism of HFBO oxidation using $Co(TPPS_4)/H_2O_2$ was proposed by the research of model compounds. The results showed that this is a promising and environmentally friendly method for production of aromatic aldehydes from HFBO under $Co(TPPS_4)/H_2O_2$ system.

고온부 냉각을 위한 스월챔버내의 유동 및 열전달 해석 (Analysis of Flow and Heat Transfer in Swirl Chamber for Cooling in Hot Section)

  • 이강엽;김형모;한영민;이수용
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2002년도 춘계 학술대회논문집
    • /
    • pp.71-78
    • /
    • 2002
  • All modem, aerospace gas turbines must operate with hot stage gas temperature several hundreds of degrees hotter than the melting temperatures of the materials used in their construction. Complicated cooling schemes need to be employed in the combustor walls and In the high pressure turbine stages. Internal passages are cast or machined into the hot sections of aero-gas turbine engines and air from the compressor is used for cooling. In many cases, the cooling system is engineered to utilize jets of high velocity air, which impinge on the internal surfaces of the components. They are divided by Impinging cooling method and Vortex cooling method. Specially, Research of new cooling system(Vortex cooling method) that overcome inefficiency of film cooling and limitation of space. The focus of new cooling system that improve greatly cooling efficiency using quantity's cooling air which is less is set in surface heat transfer elevation. Therefore, In this study, the numerical analysis have been performed for characteristic of flow and thermal in the swirl chamber and compared with the flow field measurement by LDV. especially, for understanding of high heat transfer efficiency in vicinity of wall. we considered flow structure and mechanism of vortex and heat transfer characteristic in variation of Reynolds number.

  • PDF

2상 마이크로 채널 히트 싱크에서의 유동 비등 열전달에 관한 연구 (Study on flow boiling heat transfer in two-phase micro-channels heat sink)

  • 최용석;임태우
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제39권7호
    • /
    • pp.702-708
    • /
    • 2015
  • 본 연구에서는 FC-72를 작동 유체로 사용하여 이상 유동 비등에 관한 실험을 수행하였다. 마이크로 채널은 깊이 0.2mm, 폭 0.45mm, 길이 60mm 그리고 채널의 개수는 15개로 구성되었다. 실험은 질량유속과 열유속 각각 $200-400kg/m^2s$, $5.6-49.0kW/m^2$ 범위와 증기 건도 0.02-0.93 범위에서 수행되었다. 실험 결과에 따르면 낮은 건도(x<0.2)영역에서는 핵비등에 의한 열전달이 지배적으로 작용하며, 그 이상의 증기 건도 영역에서는 핵비등과 강제 대류 비등의 영향이 복합적으로 작용하는 것으로 나타났다. 핵비등과 강제 대류 비등은 각각 비등수와 대류수에 관한 함수로 표현할 수 있으며, 실험에서 얻어진 열전달 계수는 기존의 상관식에 의한 열전달 계수와 비교하였다.

FDM을 이용한 레이저 절단 공정에서의 절단 메카니즘 및 절단폭의 해석 (A Study on Cutting Mechanism and Heat Transfer Analysis in Laser Cutting Process)

  • 박준홍;한국찬;나석주
    • 대한기계학회논문집
    • /
    • 제17권10호
    • /
    • pp.2418-2425
    • /
    • 1993
  • A two-dimensional transient heat transfer model for reactive gas assisted laser cutting process with a moving Gaussian heat source is developed using a numerical finite difference technique. The kerf width, melting front shape and temperature distribution were calculated by using the boundary-fitted coordinate system to handle the ejection of workpiece material and heat input from reaction and evaporation. An analytical solution for cutting front movement was adopted and numerical simulation was performed to calculate the temperature distribution and melting front thickness. To calculate the moving velocity of cutting front, the normal distribution of the cutting gas velocity was used. The kerf width was revealed to be dependent on the cutting velocity, laser power and cutting gas velocity.

배플수에 따른 원통다관형 열교환기 성능에 관한 실험 적 연구 (An Experimental Study of Shell and Tube Heat Exchanger Performance with Baffle Spacing)

  • 이육형;김순영;박명관
    • 대한기계학회논문집B
    • /
    • 제25권12호
    • /
    • pp.1748-1755
    • /
    • 2001
  • The shell and tube heat exchangers were introduced to apply to a big capacity condenser and a high pressure feed water heater for power plant in the beginning of 1990s. Design and manufacturing technology fur shell and tube heat exchangers have been developed until now. But it is very difficult to calculate the expected performance characteristics of the shell and tube heat exchanger, because there are many design parameters to be considered according to internal structure and the shell side heat transfer mechanism complicately related to the design parameters. Design parameters to be considered in the design stage of shell and tube heat exchanger are shell and tube side fluids, flow rate, inlet and outlet temperature, physical properties, type of heat exchanger, outer diameter, thickness, length of tube, tube arrangement, tube pitch, permissive pressure loss on both sides, type of baffle plate, baffle cutting ratio. The propose of study is an analysis TEMA(Tubular Exchanger Manufacturers Association) E shell and tube heat exchanger performance with changing a number of baffles(3, 5, 7, 9, 11) and tubes(16, 20) and determined optimal baffle spacing.