DOI QR코드

DOI QR Code

Study on flow boiling heat transfer in two-phase micro-channels heat sink

2상 마이크로 채널 히트 싱크에서의 유동 비등 열전달에 관한 연구

  • Choi, Yong-Seok (Division of Marine Engineering, Korea Maritime and Ocean University) ;
  • Lim, Tae-Woo (Division of Marine Engineering, Korea Maritime and Ocean University)
  • Received : 2015.06.10
  • Accepted : 2015.08.20
  • Published : 2015.09.30

Abstract

Two-phase flow boiling experiments were conducted using FC-72 as the working fluid. The micro-channels consisted of 15 channels with a depth of 0.2 mm, width of 0.45 mm, and length of 60 mm. Tests were performed over a mass flux range of $200-400kg/m^2s$, heat flux range of $5.6-49.0kW/m^2$, and vapor quality range of 0.02-0.93. Based on the results of the experiment, the heat transfer mechanism by nucleate boiling was dominant at a lower vapor quality (x<0.2), whereas that in the region of a vapor quality greater than 0.2 was complexly influenced by nucleate boiling and forced convection boiling. The nucleate boiling and forced convection boiling could be expressed as functions of the boiling number and convection number, respectively. In addition, the heat transfer coefficient obtained by the experiment was compared with the heat transfer coefficient by the existing correlation.

본 연구에서는 FC-72를 작동 유체로 사용하여 이상 유동 비등에 관한 실험을 수행하였다. 마이크로 채널은 깊이 0.2mm, 폭 0.45mm, 길이 60mm 그리고 채널의 개수는 15개로 구성되었다. 실험은 질량유속과 열유속 각각 $200-400kg/m^2s$, $5.6-49.0kW/m^2$ 범위와 증기 건도 0.02-0.93 범위에서 수행되었다. 실험 결과에 따르면 낮은 건도(x<0.2)영역에서는 핵비등에 의한 열전달이 지배적으로 작용하며, 그 이상의 증기 건도 영역에서는 핵비등과 강제 대류 비등의 영향이 복합적으로 작용하는 것으로 나타났다. 핵비등과 강제 대류 비등은 각각 비등수와 대류수에 관한 함수로 표현할 수 있으며, 실험에서 얻어진 열전달 계수는 기존의 상관식에 의한 열전달 계수와 비교하였다.

Keywords

References

  1. D. B. Tuckerman and R. F. W. Pease, "High-performance heat sinking for VLSI," IEEE Electron Device Letters, vol. 2, no. 5, pp. 126-129, 1981. https://doi.org/10.1109/EDL.1981.25367
  2. G. E. Moore, "Cramming more components onto integrated circuits," Electronics, vol. 38, no. 8, pp. 114-117, 1965.
  3. H. Moustaph, M. F. Zelesky, N. C. Baines, and D. Japikse, Axial and Radial Turbines, Concepts NREC, 2003.
  4. M. F. Wadel, Comparison of High Aspect Ratio Cooling Channel Designs for Rocket Combustion Chamber with Development of an Optimized Design, Technical Report No. TM-1998-206313, National Aeronautics and Space administration, Lewis Research Center, 1998.
  5. M. Visaria, I. Mudawar, and T. Pourpoint, "Enhanced heat exchanger design for hydrogen storage using high-pressure metal hydride: part 1. Design methodology and computational results," International Journal of Heat and Mass Transfer, vol. 54, no. 1-3, pp. 413-423, 2011. https://doi.org/10.1016/j.ijheatmasstransfer.2010.09.029
  6. M. Visaria, I. Mudawar, and T. Pourpoint, "Enhanced heat exchanger design for hydrogen storage using high-pressure metal hydride: part 2. Experimental results," International Journal of Heat and Mass Transfer, vol. 54, no. 1-3, pp. 424-432, 2011. https://doi.org/10.1016/j.ijheatmasstransfer.2010.09.028
  7. J. G. Collier and J. R. Thome, Convective Boiling and Condensation, 3rd Ed., Oxford University Press, 1994.
  8. G. M. Lazarek and S. H. Black, "Evaporative heat transfer, pressure drop and critical heat flux in a small vertical tube with R-11," International Journal of Heat and Mass Transfer, vol. 25, no. 7, pp.945-960, 1982. https://doi.org/10.1016/0017-9310(82)90070-9
  9. Z. Y. Bao, D. F. Fletcher, and B. S. Haynes, "Flow boiling heat transfer of freon R11 and HCFC123 in narrow passages," International Journal of Heat and Mass Transfer, vol. 43, no. 18, pp. 3347-3358, 2000. https://doi.org/10.1016/S0017-9310(99)00379-8
  10. H. J. Lee and S. Y. Lee, "Heat transfer correlation for boiling flows in small rectangular horizontal channels with low aspect ratios," International Journal of Multiphase Flow, vol. 27, no. 12, pp. 2043-2062, 2001. https://doi.org/10.1016/S0301-9322(01)00054-4
  11. S. G. Kandlikar, "A model for correlation flow boiling heat transfer in augmented tubes and compact evaporators", Journal of Heat Transfer, vol. 112, no. 1, pp. 219-228, 1990. https://doi.org/10.1115/1.2910348
  12. J. S. Lee and I. Mudawar, "Two-phase flow in high-heat-flux micro-channel heat sink for refrigeration cooling applications: Part II- heat transfer characteristics," International Journal of Heat and Mass Transfer, vol. 48, no. 5, pp. 941-955, 2005. https://doi.org/10.1016/j.ijheatmasstransfer.2004.09.019
  13. A. Megahed, "Local flow boiling heat transfer characteristics in silicon micro channel heat sinks using liquid crystal thermography", International Journal of Multiphase Flow, vol. 39, pp. 55-65, 2012. https://doi.org/10.1016/j.ijmultiphaseflow.2011.09.003
  14. Y. S. Choi, T. W. Lim, and S. S. You, "Prediction methods for two-phase flow frictional pressure drop of FC-72 in parallel micro-channels," Journal of the Korean Society of Marine Engineering, vol. 38. no. 7, pp. 821-827, 2014 (in Korean). https://doi.org/10.5916/jkosme.2014.38.7.821
  15. Y. S. Choi, T. W. Lim, S. S. You, H. S. Kim, and H. S. Choi, "Boiling heat transfer characteristics of FC-72 in parallel micro-channels," Journal of the Korean Society of Marine Engineering, vol. 38, no. 9, pp. 1032-1038, 2014 (in Korean). https://doi.org/10.5916/jkosme.2014.38.9.1032
  16. J. P. Holman, Experimental Methods for Engineering, 5th ed., Singapore, McGraw-Hill, 1989.
  17. M. M. Shah, "Chart correlation for saturated boiling heat transfer: Equations and further study," American Society of Heating, Refrigerating, and Air Conditioning Engineers Transactions, vol. 88, pp. 66-86, 1982.
  18. G. R. Warrier, V. K. Dhir, and L. A. Momoda, "Heat transfer and pressure drop in narrow rectangular channels," Experimental Thermal and Fluid Science, vol. 26, no. 1, pp. 53-64, 2002. https://doi.org/10.1016/S0894-1777(02)00107-3
  19. S. M. Kim and I. Mudawar, "Universal approach to predicting saturated flow boiling heat transfer in mini/micro-channels - Part II. two-phase heat transfer coefficient," International Journal of Heat and Mass Transfer, vol. 64, pp. 1239-1256, 2013. https://doi.org/10.1016/j.ijheatmasstransfer.2013.04.014
  20. S. W. Churchill and R. Usagi, "A general expression for the correlation of rates of transfer and other phenomena," American Institute of Chemical Engineers Journal, vol. 18, no. 6, pp. 1121-1128, 1972. https://doi.org/10.1002/aic.690180606

Cited by

  1. A New Correlation on Heat Transfer Coefficient in Horizontal Multi Channels vol.28, pp.5, 2016, https://doi.org/10.13000/JFMSE.2016.28.5.1388