• 제목/요약/키워드: Heat transfer mechanism

검색결과 277건 처리시간 0.025초

노즐 특성 변화에 따른 미분무수와 화염과의 상호작용에 관한 수치해석 (Numerical Analysis on Interaction between Fire Flame and Water Mist according to the Variation of Nozzle Performance)

  • 배강열;정희택;김형범
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2983-2988
    • /
    • 2007
  • In the present study, the numerical investigation on the effects of water-mist characteristics has been carried out for the fire suppression mechanism. The FDS are used to simulate the interaction of fire plume and water mists, and program describes the fire-driven flows using LES turbulence model, the mixture fraction combustion model, the finite volume method of radiation transport for a non-scattering gray gas, and conjugate heat transfer between wall and gas flow. The numerical model is consisted of a rectangular enclosure of $L{\times}W{\times}H=1.5{\times}1.5{\times}2.0m$ and a water mist nozzle that be installed 1.8m from fire pool. In the study, the parameters of nozzle for simulation are the droplet size and the spray velocity. Finally, the droplet size influences to fire flume on fire suppression than spray velocity because of the effect of terminal velocity, and the optimal condition for fire suppression is that the droplet size and the spray velocity are $100{\mu}m$ and 20m/s, respectively.

  • PDF

Impacts of C60-Ionic Liquids (ILs) Interactions and IL Alkyl Chain Length on C60 Dispersion Behavior: Insights at the Molecular Level

  • Wang, Zhuang;Tang, Lili;Wang, Degao
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권9호
    • /
    • pp.2679-2683
    • /
    • 2014
  • Mechanisms underlying the impacts of interactions between carbon nanoparticles (CNPs) and ionic liquids (ILs) on the physicochemical behavior of CNPs need to be more full worked out. This manuscript describes a theoretical investigation at multiple levels on the interactions of fullerene $C_{60}$ with 21 imidazolium-based ILs of varying alkyl side chain lengths and anionic types and their impacts on $C_{60}$ dispersion behavior. Results show that ${\pi}$-cation interaction contributed to mechanism of the $C_{60}$-IL interaction more than ${\pi}$-anion interaction. The calculated interaction energy ($E_{INT}$) indicates that $C_{60}$ can form stable complex with each IL molecule. Moreover, the direction of charge transfer occurred from IL to $C_{60}$ during the $C_{60}$-IL interaction. Quantitative models were developed to evaluate the self-diffusion coefficient of $C_{60}$ ($D_{fullerene}$) in bulk ILs. Three interpretative molecular descriptors (heat of formation, $E_{INT}$, and charge) that describe the $C_{60}$-IL interactions and the alkyl side chain length were found to be determinants affecting $D_{fullerene}$.

Effects of cyclic mean pressure of helium gas on performance of integral crank driven stirling cryocooler

  • Hong, Yong-Ju;Ko, Junseok;Kim, Hyo-Bong;Park, Seong-Je
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제18권3호
    • /
    • pp.30-34
    • /
    • 2016
  • An integral crank driven Stirling cryocooler is solidly based on concepts of direct IR detector mounting on the cryocooler's cold finger, and the integral construction of the cryocooler and Dewar envelope. Performance factors of the cryocooler depend on operating conditions of the cryocooler such as a cyclic mean pressure of the working fluid, a rotational speed of driving mechanism, a thermal environment, a targeted operation temperature and etc.. At given charging condition of helium gas, the cyclic mean pressure of helium gas in the cryocooler changes with temperatures of the cold end and the environment. In this study, effects of the cyclic mean pressure of helium gas on performances of the Stirling cryocooler were investigated by numerical analyses using the Sage software. The simulation model takes into account thermodynamic losses due to an inefficiency of regenerator, a pressure drop, a shuttle heat transfer and solid conductions. Simulations are performed for the performance variation according to the cyclic mean pressure induced by the temperature of the cold end and the environment. This paper presents P-V works in the compression and expansion space, cooling capacity, contribution of losses in the expansion space.

유한요소법에 의한 평면 TV 새도우마스크의 열변형해석 및 전자빔 오착 예측 (Thermal Deformation Analysis of Shadow Mask in a Flat TV and Prediction of Electron Beam Landing Shift by FEM)

  • 김정;박수길;강범수
    • 대한기계학회논문집A
    • /
    • 제26권11호
    • /
    • pp.2297-2304
    • /
    • 2002
  • Two-dimensional and three-dimensional finite element methods have been used to analyze the deformation behavior of a shadow mask due to thermal and tension load. The shadow mask inside the Braun tube of a TV set has numerous slits through which the electron beams are guided to land on the designed phosphor of red, green or blue. Its thermal deformation therefore causes landing shift of the electron beam and results in decolorization of a screen. For the realistic finite element analysis, the effective thermal conductivity and the effective elastic modulus arc calculated, and then the shadow mask is modeled as shell without slits. Next a transient thermal analysis of the shadow mask is performed, wherein thermal radiation is a major heat transfer mechanism. Analysis of the resulting thermal deformation is followed, from which the landing shift of the electron beam is obtained. The present finite element scheme may be efficiently used to reduce thermal deformation of a shadow mask and in developing prototypes of a large screen flat TV.

구형용기의 하부면 냉각에 의한 해수 동결거동의 기초적 연구 (A Fundamental Study on Sea Water Freezing Behavior in a Rectangular Vessel Cooled from Below)

  • 김명준;길병래;김명환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제21권5호
    • /
    • pp.564-570
    • /
    • 1997
  • The most important factor for the desalination system is the fresh water production cost dependent upon the possible energy source which should be obtained easily and with low price. Recently in Korea the demand of LNG, as a cheap and clean energy which does not cause an environmental problem, has sharply been increased. In general, LNG is storaged in a tank as a liquid state below -162 'C. When it is serviced, however, the LNG absorbs energy from a heating source and transforms to the gaseous state with high pressure. During this process a huge amount of cold energy accumulated in LNG is wasted. This waste cold energy can be utilized for producing fresh water from sea water using a sea water freezing desalination system. In order to develop a sea water freezing desalination system and to establish its design technique, a qualitative and quantitative data regarding the freezing behavior of sea water is needed in advance. The goal of this study, therefore, are to reveal the freezing mechanism of sea water, to measure the freezing rate, and to investigate the freezing heat-transfer characteristics. The experimental results help to provide a general understanding of the sea water freezing behavior in a Rectangular vessel cooled from below.

  • PDF

마이크로 이하 기포로부터의 소노루미네센스 특성 (Sonoluminescence Characteristics from Submicron Size bubbles)

  • 변기택;강상우;김기영;곽호영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1201-1206
    • /
    • 2004
  • Sonoluminescence (SL) characteristics such as pulse shape, radiance and spectrum radiance from submicron bubbles were investigated. In this study, a set of analytical solutions of the Navier-Stokes equations for the gas inside bubble and equations obtained from mass, momentum and energy equations for the liquid layer adjacent the bubble wall were used to estimate the gas temperature and pressure at the collapse point, which are crucial parameters to determine the SL characteristics. Heat transfer inside the gas bubble as well as at the liquid boundary layer, which was not considered in the most of previous studies on the sonoluminescence was taken it into account in the calculation of the temperature distribution inside the bubble. It was found that bremsstrahlung is a very possible mechanism of the light emission from either micron or submicron bubbles. It was also found that the peak temperature exceeding $10^{6}$ K in the submicron bubble driven at 1 MHz and 4 atm may be due to the rapid change of the bubble wall acceleration near the collapse point rather than shock formation.

  • PDF

열구동형 폴리실리콘 마이크로 액츄에이터의 제작 및 특성분석 (Fabrication of Thermally-Driven Polysilicon Microactuator and Its Characterization)

  • Lee, J.H.;Lee, C.S.;Yoo, H.J.
    • 한국정밀공학회지
    • /
    • 제14권12호
    • /
    • pp.153-159
    • /
    • 1997
  • A thermally-driven polysilicon microactuator has been fabricated using surface micromachining techniques. It consists of P-doped polysilicon as a structural layer and TEOS(tetraethylorthosilicate) oxide as a sacrificial layer. The polysilicon was annealed for the relaxation of residual stress which is the main cause to its deformation such as bending and buckling. And newly developed HF GPE(gas-phase etching) process was also employed to eliminate the troublesome stiction problem using anhydrous HF gas and CH$_{3}$OH vapor, and successfully fabricated the microactuators. The actuation is incurred by the thermal expansion due to the current flow in the active polysilicon cantilever, which motion is amplified by lever mechanism. The moving distance of polysilicon microactuator was experimentally conformed as large as 21 .mu. m at the input voltage level of 10V and 50Hz square wave. The actuating characteris- tics are also compared with the simulalted results considering heat transfer and thermal expansion in the polysilicon layer. This microactuator technology can be utilized for the fabrication of MEMS (microelectromechanical system) such as microrelay, which requires large displacement or contact force but relatively slow response.

  • PDF

소듐냉각고속로(원형로) 주요기기 제작 특성 (Manufacturing characteristic of major components for prototype SFR)

  • 최한광;이중곤;전일정;김세훈;이정규;김용수;김철;안동현
    • 한국압력기기공학회 논문집
    • /
    • 제12권1호
    • /
    • pp.115-125
    • /
    • 2016
  • The prototype SFR has currently been under design by KAERI. The size of its major components is much larger than that of APR1400 and high temperature materials are applied for it. The increased size of components and those specific materials effect on material procurement, manufacturing process and fabrication facilities. The manufacturing methods are studied for Reactor Vessel/Guard Vessel, Control Rod Drive Mechanism, Heat Exchanger, Primary Pump, Reactor Vessel Internals, Steam Generator and In-Vessel Transfer Machine. The proper manufacturing methods are suggested for each component including side forging technology for ultra large forgings of Reactor Vessel to minimize the weld seams on which In-service Inspection should be conducted.

미분무수 분사 특성에 따른 가열 챔버 내 냉각 성능 수치 해석 (Numerical Analysis of Effects of Water Mist Injection Characteristics on Cooling Performance in Heated Chamber)

  • 수먼;이상욱
    • 한국분무공학회지
    • /
    • 제17권2호
    • /
    • pp.64-70
    • /
    • 2012
  • Water mist fire suppression systems which use relatively small droplets of water with high injection pressure are increasingly being used in wider applications because of its greater efficiency, low flooding damage and low toxicity. However, the performance of the system significantly relies on the water mist characteristics and it requires better understanding of fire suppression mechanism of water mist. In the present study, computational fluid dynamics simulations were carried out to investigate cooling performance of water mist in heated chamber. The gas phase was prepared with natural convection heat transfer model for incompressible ideal case and then the effects of water mist injection characteristics on cooling capabilities were investigated upon the basis of the pre-determined temperature field. For the simulation of water mist behavior, Lagrangian discrete phase model was employed by using a commercial code, FLUENT. Smaller droplet sizes, greater injection angles and higher flow rates provided relatively higher cooling performance.

$B\dot{e}nard$ 대류가 형성된 사각공동내의 상단 평판에서 기포의 성장이 열전달에 미치는 영향 (The Effect of Heat Transfer from the Bubble Growing on the $B\dot{e}nard$ Convection Flow in a Square Cavity)

  • 엄용균;권승혜;권기한
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.211-216
    • /
    • 2001
  • Flow motion and variation of thermal field around a bubble which attached at the upper cooled solid wall in a $B\dot{e}nard$ convection flow is studied experimentally using thermo-sensitive liquid-crystal tracers and image processing for flow visualization and analysis. The air is injected gradually by $0.1m\ell$ to make the bubble. As the growing of the bubble in a $B\dot{e}nard$ convection flow, the variation of temperature field and surface tension along the bubble, which in turn cause to change the thermal field patterns and the flow direction and patterns. 6 cells flow pattern is transformed into diverse flow pattern. At the large size of a bubble, it's only conduction mechanism under the region of the bubble because of low Ra number 1137, but the convection flow both sides of the bubble leads to another convection flow in the bubble influence area which has been remained stable stagnation.

  • PDF