• Title/Summary/Keyword: Heat storage tank

Search Result 296, Processing Time 0.025 seconds

Performance Analysis of Energy-Slab Ground-Coupled Heat Exchanger (에너지슬래브 지중열교환기의 성능 분석)

  • Choi, Jong-Min;Sohn, Byong-Hu
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.6
    • /
    • pp.487-496
    • /
    • 2012
  • Recently, utilization of building foundations as ground-coupled heat exchangers has attracted much attention because they reduce the cost and enhance the heat transfer. The objective of this study is to evaluate the performance of energy-slab ground-coupled heat exchanger installed in a commercial building. In order to demonstrate the energy transfer characteristics of the energy-slab, experiments were conducted from October 2010 to September 2011. The 1-year measurement results showed that the mean EWTs of brine returning from the energy-slab were $9.6^{\circ}C$ in heating season and $24.9^{\circ}C$ in cooling season, which were in a range of design target temperatures. In addition, the geothermal heat pump system with the energy-slab showed on-off operation according to the setting temperatures of secondary fluid in water storage tank. The results also showed that the energy-slab extracted heat of 198.6 kW from the ground and injected heat of 318.9 kW to the ground, respectively.

A Study on the Operating Performance of Solar Assisted Hot Water System for Apartment Houses (공동주택용 태양열원 급탕시스템의 운전성능 연구)

  • 이윤규;황인주
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.11
    • /
    • pp.928-936
    • /
    • 2003
  • In the present study, feasibility investigation on the solar assisted hot water supply system for apartment houses was carried out by the review of service facility and heat load pattern. Also analysis and experiment of the small sized system model were performed. This hybrid system are consists of solar collector, heat storage tank, controller, and gas boiler using LPG as a secondary heat source. The analytical results showed a good agreement with experimental data. We found that this hybrid system could reduce the energy cost by 30% for hot water compared to typical boiler system in the apartment houses. Also we showed that this model could be used for the energy and economic analysis of the hybrid system.

Optimization approach of insulation thickness of non-vacuum cryogenic storage tank

  • MZAD, Hocine;HAOUAM, Abdallah
    • Progress in Superconductivity and Cryogenics
    • /
    • v.22 no.1
    • /
    • pp.17-23
    • /
    • 2020
  • Cryogenic insulation systems, with proper materials selection and execution, can offer the highest levels of thermal performance. Insulations are listed in order of increasing performance and, generally, in order of increasing cost. The specific insulation to be used for a particular application is determined through a compromise between cost, ease of application and the effectiveness of the insulation. Consequently, materials, representative test conditions, and engineering approach for the particular application are crucial to achieve the optimum result. The present work is based on energy cost balance for optimizing the thickness of insulated chambers, using foamed or multi layered cryogenic shell. The considered insulation is a uniformly applied outer layer whose thickness varies with the initial and boundary conditions of the studied vessel under steady-state radial heat transfer. An expression of the optimal insulation thickness derived from the total cost function and depending on the geometrical parameters of the container is presented.

Experimental Study on the Thermal Performance of a Printed Circuit Heat Exchanger in a Cryogenic Environment (극저온 환경의 인쇄기판형 열교환기 열적성능에 대한 실험적 연구)

  • Kim, Dong Ho;Na, Sang Jun;Kim, Young;Choi, Jun Seok;Yoon, Seok Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.8
    • /
    • pp.426-431
    • /
    • 2015
  • The advantages of a printed circuit heat exchanger (PCHE) are the compactness and efficiency derived from its heat-transfer characteristics; furthermore, a PCHE for which a diffusion bonding method was used during production can be applied to extreme environments such as a cryogenic condition. In this study, a micro-channel PCHE fabricated by diffusion bonding was investigated in a cryogenic environment regarding its thermal performance and the pressure drop. The test rig consists of an LN2 storage tank, vaporizers, heaters, and a cold box, whereby the vaporized cryogenic nitrogen flows in hot and cold streams. The overall heat-transfer coefficients were evaluated and compared with traditional correlations. Lastly, we suggested the modified heat-transfer correlations for a PCHE in a cryogenic condition.

Impact Assessment of the Damage by a Pool Fire in Yard Storage Facilities of a Container Terminal (컨테이너 터미널 옥외저장소에서의 액면화재에 대한 피해영향 평가)

  • Hwang, Man Woong;Lee, Ik Mo;Hwang, Yong Woo;Chun, Young Woo
    • Journal of Korean Society of Disaster and Security
    • /
    • v.9 no.2
    • /
    • pp.33-42
    • /
    • 2016
  • Domestic harbor yard storage facilities are a place specifically located in a container terminal for import and export of packaged dangerous goods, and due to the recent relaxed criteria for the secured open area, concerns for the extended damage upon accidents are increasing. In this study, the impact of damages by radiant heat was analyzed through a simulation of a pool fire caused by the leakage of flammable liquids from a tank container. As a result, it was analyzed that the distance of radiant heat according to threshold damage levels was beyond the current criteria of the secured open area, and the structural damage of adjacent containers could happen within a very short time if they were exposed to the early pool fire continuously. It is considered that this study will be helpful in preparing the proper criteria for the secured open area between yard storage facilities in a container terminal.

Effects of the Cooling and Heating System with Seasonal Thermal Storage in Alluvial Aquifer on Greenhouse Heating (충적대수층 계간축열 냉난방 시스템의 온실 난방 효과)

  • Moon, Jong Pil;Kang, Geum Choon;Kim, Hyung Gweon;Lee, Tae Seok;Oh, Sung Sik;Jin, Byung Ok
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.6
    • /
    • pp.127-135
    • /
    • 2017
  • In this study, a cold well and a warm one with the distance of 100 m were installed in the alluvial aquifer. Groundwater used as the heat and the cold source of heat pump was designed to flow into the warm and the cold well with a diameter of 200 mm. In order to increase the heat and cold storage in aquifer, six auxiliary wells with the diameter of 50 mm and the depth of 30 m were installed at an interval of 5 m from the main well. Also, heat pump 50 RT, the thermal tank $40m^3$, and a remote control and monitoring system were installed in three single-span greenhouses ($2,100m^2$) for growing tomato in Buyeo, Chungcheongnam-do. According to the aquifer heat storage test which had been conducted from Aug. 31 to Sep. 22, 2016, warm water of $850m^3$ was found to flow into warm well. The temperature of the injected water was $30^{\circ}C$ (intake temperature : $15^{\circ}C$), and the heat of 12.8 Gcal was stored. The greenhouse heating test in winter had been conducted from Nov. 21, 2016 to Apr. 30, 2017. On Nov. 21, 2016 when heating greenhouse started, the aquifer temperature of the warm well was $18.5^{\circ}C$. The COP for heating with water source at $18.5^{\circ}C$ was 3.8. The intake water temperature of warm well was gradually lowered to the temperature of $15^{\circ}C$ on Jan. 2, 2017 and the heat pump COP was measured to be 3.2 at that time. As a result, the heat pump COP was improved by 18 %. and retrieval heat was 8 Gcal, the retrieval rate of heat stored in aquifer was estimated at 63 %.

Heating Effect of Greenhouse Cultivated Mangos by Heat Pump System using Underground Air as Heat Source (지하공기 이용 히트펌프시스템의 망고온실 난방효과)

  • Kang, Younkoo;Kim, Younghwa;Ryou, Youngsun;Kim, Jongkoo;Jang, Jaekyoung;Lee, Hyoungmo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.200.1-200.1
    • /
    • 2011
  • Underground air is a special energy source in Jeju and distributes lava cave, pyroclastic, open joint, and crushing zone. A possible area to utilize underground air is 85% of Jeju except to the nearby area of Sambang Mt. and 25m high coastal area from sea level. In Jeju, underground air is used for heating agricultural facilities such as greenhouse cultivated mangos, Hallbong and mandarin orange, pigsty, mushroom cultivation house, etc. and fertilizing natural $CO_2$ gas by suppling directly into agricultural facilities. But this heating method causes several problem because the underground air has over 90% relative humidity and is inadequate in heating for crops. Mangos are the most widely grown tropical fruit trees and have been cultivated since 1993 in Jeju. In Jeju, the cultivating area is about 20ha and amount of harvest is 275ton/year in 2010. In this study, the heat pump system using underground air as heat source was installed in mangos greenhouse which area is $495m^2$. The capacity of heat pump system and heat storage tank was 10RT, 5ton respectively and heating effect and heating performance of the system were analysed.

  • PDF

An Experimental Study on a Windheat Generation System with a Savonius Wind Turbine

  • Kim, Young-Jung;Ryou, Young-Sun;Kang, Geum-Choon;Paek, Yee;Yun, Jin-Ha;Kang, Youn-Ku
    • Agricultural and Biosystems Engineering
    • /
    • v.6 no.2
    • /
    • pp.65-69
    • /
    • 2005
  • A windheat generation system with a Savonius windturbine was developed and the performance was evaluated through field tests. The system consisted of a heat generation drum, heat exchanger, water storage tank, and two circulation pumps. Frictional heat is created by rotation of a rotor inside the drum containing thermo oil, and was used to heat water. In order to estimate the capacity of this windheat generation system, weather data was collected for one year at the site near the windheat generation system. Wind Power from the savonius wind turbine mill was transmitted to the heat generation system with an one-to-three gear system. Starting force to rotate the savonius wind turbine and the whole system including the windheat generation system were 1.0 and 2.5 kg, respectively. Under the outdoor wind condition, maximum speed of the rotor in the drum was 75rpm at wind speed 6.5 m/sec, which was not fast enough to produce heat for greenhouse heating. Annual cumulative hours for wind speeds greater than 5 m/sec at height of 10, 20, 30 m were 190, 300 and 1020 hrs, respectively. A $5^{\circ}C$ increase in water temperature was achieved by the windheat generation system under the tested wind environment.

  • PDF

State-of-the-Art of the Ni-bearing Ferritic Steels for LNG Storage Facilities (액화천연가스 저장용 폐라이트계 Ni 첨가강의 물성 및 개발 동향)

  • Han Seung Zeon;Kim Hyoung-Sik;Hong Seong-Ho;Kim Sung-Joon
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.3
    • /
    • pp.78-87
    • /
    • 1998
  • The mechanical properties, heat treatment and the history for the development of Ni-bearing ferritic steels for the application at low temperatures are reviewed. Ni-bearing ferritic steels are classified into $2-3\%$ Ni steels, $5.5\%$ Ni steel, $9\%$ Ni steel and $13\%$ Ni steel., of which $9\%$ Ni steels are most widely used for the large LNG storage tanks owing to their encellent fracture toughness up to $-196^{\circ}C$. The effect of retained austenite on the tensile properties and toughness was precisely discussed. As the size of LNG storage tank increases, thicker plates are needed. Thus, the recent efforts for the improvement of low temperature toughness and homogeneity are also introduced.

  • PDF

A Study on the Probability of BLEVE of Above-ground LP Gas Storage Tanks Exposed to External Fire (지상식 LPG 저장탱크의 외부화재에 의한 BLEVE 가능성 해석)

  • Lee Seung-Lim;Lee Young-Soon
    • Journal of the Korean Institute of Gas
    • /
    • v.7 no.1 s.18
    • /
    • pp.19-23
    • /
    • 2003
  • The purpose of this thesis is to investigate the BLEVE probability of LP gas storage tanks which are relatively more dangerous, by the deductive calculating method using the results of Birk's pilot tank test and the required heat capacity of BLEVE. The result that BLEVEs can occur in only above 43.68 percent of liquid filling level under $600^{\circ}C$ of tank pate temperature and $53^{\circ}C$ of inner liquid temperature, was obtained and will be useful for preventing the BLEVE of LP gas storage tanks in fire sites. In addition, this research showed conditions of external leak and fire causing BLEVE, based on 15ton capacity of LP gas tank which has the same specifications as those in Puchon LP gas filling station accident. The result of the calculation is that the minimum pool fire conditions of BLEVE are above 7.2mm equivalent diameter under a liquid release condition and above 17.6mm equivalent diameter under a two-phase release condition. In the end, the result of calculating the pool size corresponding the above conditions using EFFECTS version 2.1, concludes that a minimum of 3.3 meters of diameter and 10.4 meters of height should be needed for BLEVE outbreak.

  • PDF