• Title/Summary/Keyword: Heat spot

Search Result 263, Processing Time 0.029 seconds

A Study on the Mechanical Properties of Joints in Laser Transmission Joining of Polymers (폴리머의 레이저 투과접합 시 접합부의 기계적 성질에 관한 연구)

  • Cha, Sang-Woo;Kim, Jin-Beom;Yoon, Suk-Hwan;Na, Suck-Joo
    • Journal of Welding and Joining
    • /
    • v.25 no.2
    • /
    • pp.43-48
    • /
    • 2007
  • Laser Transmission Joining (LTJ) of plastics is a process in which light of suitable wavelength is transmitted through a transparent substrate that is in contact with an absorbing one. In this paper, LTJ is investigated by preliminary experiments from the viewpoint of mechanical engineering. To understand transmitting characteristics of each polymer substrate, transmission rate, reflection rate and absorption coefficient of polymer are measured by using a laser power-meter. Characteristics of joining in the spot welding and seam welding are investigated by measuring the fracture load. Fracture load increases in accordance to the laser power and irradiation time. However, when the laser power is over 60W and irradiation time over 4seconds, fracture load decreases. This phenomenon is probably due to heat-softening of materials. Besides, cavities are generated at a joint by evaporation of water molecules, which can be suppressed by introduction of a gap between two substrates.

Design, Optimization and Validation of Genomic DNA Microarrays for Examining the Clostridium acetobutylicum Transcriptome

  • Alsaker, Keith V.;Paredes, Carlos J.;Papoutsakis, Eleftherios T.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.5
    • /
    • pp.432-443
    • /
    • 2005
  • Microarray technology has contributed Significantly to the understanding of bacterial genetics and transcriptional regulation. One neglected aspect of this technology has been optimization of microarray-generated signals and quality of generated information. Full genome microarrays were developed for Clostridium acetobutylicum through spotting of PCR products that were designed with minimal homology with all other genes within the genome. Using statistical analyses it is demonstrated that Signal quality is significantly improved by increasing the hybridization volume. possibly increasing the effective number of transcripts available to bind to a given spot, while changes in labeled probe amounts were found to be less sensitive to improving signal quality. In addition to Q-RT-PCR, array validation was tested by examining the transcriptional program of a mutant (M5) strain lacking the pSOL1 178-gene megaplasmid relative to the wildtype (WT) strain. Under optimal conditions, it is demonstrated that the fraction of false positive genes is 1% when considering differentially expressed genes and 7% when considering all genes with signal above background. To enhance genomic-scale understanding of organismal physiology, using data from these microarrays we estimated that $40{\sim}55%$ of the C. acetobutylicum genome is expressed at any time during batch culture, similar to estimates made for Bacillus subtilis.

Characterization of Surface treatment for Mold materials using optical system of laser heat treatment (레이저 열처리 광학계를 이용한 금형소재의 표면 열처리 특성)

  • Shin, Ho-Jun;Yoo, Young-Tae;Shin, Hyung-Heon;Ro, Kyoung-Bo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1542-1547
    • /
    • 2007
  • Laser surface treatment technologies have been used to improve characteristics of wear and to enhance the fatigue resistance for mold parts. The optical lens with the elliptical profile is designed to obtain a wide surface hardening area with a uniform hardness. The objective of this research work is to investigate the influence of the process parameters, such as power of laser and defocused spot position, on the characteristics of laser surface treatment for the case of SKD61 steel and SCM4 steel. From the results of the experiments, it has been shown that the maximum average hardness is approximatly 700${\sim}$780 Hv when the power, focal position and the travel of laser are 1,095 W, 0mm and 0.3 m/min, respectively. In samples treated with lower scanning speeds, some small carbide particles appear in the interdendritic regions. This region contains fine martensite and carbide in proportions which depend on the local thermal cycle.

  • PDF

NO Reduction and High Efficiency Combustion by Externally Oscillated Staging Burner

  • Lim, Mun-Sup;Yang, Won;Chun, Young-Nam
    • Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.158-163
    • /
    • 2009
  • It is difficult for a burner to achieve an increase in combustibility and a reduction of NOx emission, simultaneously. The reason is because thermal NOx could be reduced at low temperature, while the combustibility should be decreased. To solve this problem, an externally oscillated staging burner was developed, and experiment was conducted according to effective parameters. The combustibility could be improved through the accelerated transfer of heat, mass and momentum obtained by external oscillation. Also, NO is reduced by the decrease of residence time of burning gas in the local highest-temperature spot, which is decreased by the external oscillation and fuel staging. Experiments on variables were conducted to determine the reference flame, and the flame generating the lowest NO concentration was selected. The conditions of reference flame were oscillation frequency 250 Hz, sound pressure 1 VPP, and air ratio 1.1, and NO and CO concentrations were 1ppm and 20 ppm, respectively.

The Thermal Analysis of Pole Mount Mold Transformer with One-body Molding by Duct Condition (일체형 주상용 몰드 변압기의 덕트에 따른 열해석 특성 연구)

  • 조한구;이운용;박영두
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.3
    • /
    • pp.348-352
    • /
    • 2004
  • The mold transformers have been widely used in underground substations in large building and have some advantages in comparison to oil-transformer, that is low fire risk, excellent environmental compatibility, compact size and high reliability. In addition, the application of mold transformer for outdoor is possible due to development of epoxy resin. The mold transformer generally has cooling duct between low voltage coil and high voltage coil. A mold transformer made by one body molding method has been developed for small size and ow loss, but it needs some cooling method because heat radiation between each winding is difficult. The life of transformer is significantly dependent on the thermal behavior in windings. Many transformer designers have calculated temperature distribution and hot spot point by finite element method(FEM) to analyze winding temperature rise. In this paper, The thermal analysis of pole mount mold transformer with one body molding by duct condition is investigated and the test result of temperature rise is compared with simulation data.

Thin layer(Overcoat) for TFT-LCD color filter (LCD용 컬러필터 보호막)

  • Kim, Myeong-Koo;Park, Joo-Hyeon;Lim, Young-Taek
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.273-273
    • /
    • 2006
  • Over the past years, a large number of acrylate polymers have been developed and the overcoat thin layer containing acrylate polymers have been used for TFT-LCD color filter. As forming thin layer using acrylate polymers, the existing acrylate polymers have some problems such as low hardness by low Tg temperature, coating uniformity and solubility in organic solvent. To solve these problems, we synthesized new polymer(Scheme.), containing olefin monomer, which has high Tg temperature, good coating uniformity and good solubility in organic solvent. The overcoat thin layer containing new polymer resulted in good coating uniformity, stain, spot, scratch, heat resistance, DOP(Degree Of Planarization) on RGB glass, transparency, hardness, adhesion, anti-chemicals(anti-acid, anti-base, anti-organic solvent), insulation and anti-humidity. Scheme. The structure of new polymer X = Olefin monomer contains ketone, ester, hydroxy, ether, halogen, nitrile, alkoxy, phenyl functional group $R_1$ and $R_2$= H or $CH_3$. Ratio=0<[1/(1+m+n)]<0.7,0.1[$\leq$[n/(1+m+n)]<0.5.

  • PDF

Temperature Rise Test and Temperature Distribution Analysis of Pole Mount Mold Transformer with One-body Molding (일체형 주상용 몰드 변압기의 온도분포 및 특성 비교)

  • Cho, Han-Goo;Lee, Un-Yong;Kang, Tack-Sou;Choi, In-Hyuk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.12
    • /
    • pp.1154-1159
    • /
    • 2006
  • The mold transformers have been widely used in underground substations of large building and have some advantages when compared with oil-transformer. Those advantages are low fire risk, environmental compatibility, compact size and high reliability. The mold transformer is generally known to have cooling duct between low voltage and high voltage coil. To achieve better compact structure and low loss, mold transformers made by one body molding method has been developed. Nevertheless, such kinds of transformer need better cooling method because heat radiation between each winding is still of problem. The life of transformer is significantly dependent on the thermal behavior in windings. Many designers have calculated temperature distribution in transformers and hot spot point by finite element method(FEM) to analyze winding temperature rise. In this paper, the temperature distribution analysis of 100 kVA pole mold transformer for power distribution were investigated by FEM program and the thermal analysis results were compared with temperature rise test.

Ablation of Cr Thin Film on Glass Using Ultrashort Pulse Laser (극초단펄스 레이저에 의한 크롬박막 미세가공)

  • 김재구;신보성;장원석;최지연;장정원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.620-623
    • /
    • 2003
  • The material processing by using ultrashort pulse laser, in recently, is actively applying into the micro machining and nano-machining technology since ultrashort pulse has so faster than the time which the electrons energy absorbing photon energy is transmitted to surrounding lattice-phonon that it has many advantages in point of machining. The micro machining of metallic thin film on the plain glass is widely used in the fields such as mask repairing for semiconductor, fabrication of photonic crystal, MEMS devices and data storage devices. Therefore, it is important to secure the machining technology of the sub-micron size. In this research, we set up the machining system by using ultrashort pulse laser and conduct on the Cr 200nm thin film ablation experiments of spot and line with the variables such as energy, pulse number, speed, and so on. And we observed the characteristics of surrounding heat-affected zone and by-products appeared in critical energy density and higher energy density through SEM, and also examined the machining features between in He gas atmosphere which make pulse change minimized by nonlinear effect and in the air. Finally, the pit size of 0.8${\mu}{\textrm}{m}$ diameter and the line width of 1${\mu}{\textrm}{m}$ could be obtained.

  • PDF

Calculation of Joule heating and temperature distribution generated in the KSTAR superconducting magnet structure

  • Seungyon Cho;Park, Chang-Ho;Sa, Jeong-Woo
    • Progress in Superconductivity and Cryogenics
    • /
    • v.4 no.1
    • /
    • pp.78-83
    • /
    • 2002
  • Since the KSTAR superconducting magnet structure should be maintained at a cryogenic temperature of about 4 K, even a small amount of heat might be a major cause of the temperature rise of the structure. The Joule heating by eddy currents induced in the magnet structure during the KSTAR operation was found to be a critical parameter for designing the cooling scheme of the magnet structure as well as defining the requirements of the refrigerator for the cryogenic system. Based on the Joule heating calculation, it was revealed that the bulk temperature rise of the magnet coil structure was less than 1 K. The local maximum temperature especially at the inboard leg of the TF coil structure increased as high as about 21 K for the plasma vertical disruption scenario. For the CS coil structure, the maximum temperature was obtained from the PF fast discharging scenario. This means that the vertical disruption and PF fast discharging scenarios are the major scenarios for the design of TF and CS coil structures, respectively. For the reference scenario, the location of maximum temperature spot changes according to the transient current variation of each PF coil.

Laser Head Design and Heat Transfer Analysis for 3D Patterning (3차원 패터닝을 위한 레이저 헤드설계 및 열해석)

  • Ye, Kang-Hyun;Choi, Hae-Woon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.4
    • /
    • pp.46-50
    • /
    • 2016
  • A laser head was designed for micro-scale patterning and joining applications. The target feature size of the pattern was $100{\mu}m$, and optics were designed to perform the target. Two singlet lenses were combined to minimize the chromatic aberration, and the geometry of the lenses was calculated by using the raytracing method with a commercial software program. As a restriction of lens design, the focal length was set at 100mm, and the maximum diameter of the lens or beam size was limited to 10mm for the assembly in the limited cage size. The maximum temperatures were calculated to be $1367^{\circ}C$, $1508^{\circ}C$, and $1905^{\circ}C$ for 10, 12, and 15 Watts of power, respectively. A specially designed laser head was used to compensate for the distance between the object and the lens. The detailed design mechanism and 3D data were presented. The optics design and detailed performance of the lens were analyzed by using MTF and spot diagram calculation.