• 제목/요약/키워드: Heat shock factor-1

검색결과 90건 처리시간 0.026초

붕어와 마우스의 간세포 배양에서 열 스트레스에 의해 유도되는 heat shock factor1 (HSF1)의 비교 (Comparison of Thermal Stress Induced Heat Shock Factor 1 (HSF1) in Goldfish and Mouse Hepatocyte Cultures)

  • 김소선;소재형;박장수
    • 생명과학회지
    • /
    • 제26권12호
    • /
    • pp.1360-1366
    • /
    • 2016
  • Heat shock proteins (HSPs)은 다양한 생리학적인 또는 환경적 스트레스에 응답하여 유도된다. 그러나 HSPs의 전사 활성은 heat shock factors (HSFs)에 의해 조절 된다. 현재 연구에서는 붕어와 마우스의 간세포 배양에서 열 스트레스에 의한 heat shock factor 1 (HSF1)의 패턴 차이와 heat shock protein 70 (HSP70)의 발현을 면역분석법을 이용하여 조사하였다. 붕어의 간세포는 $33^{\circ}C$에서 trimer를 이루지만 마우스의 간세포는 $42^{\circ}C$에서 trimer를 이루었다. 이 연구는 붕어와 마우스의 HSF1은 열 스트레스로부터 다른 온도에서 반응을 한다는 것을 보여준다. 또한 재조합 단백질을 이용하여 붕어와 인간의 HSF1의 온도에 따른 활성 조건을 CD spectroscopy와 면역분석을 이용하여 조사하였다. 이러한 결과들은 인간과 마우스 HSF1과 붕어의 HSF1은 온도에 의한 활성 변화를 보이지만 그들의 최적 활성 온도는 다르다는 것을 알 수 있다.

Acceleration of heat shock-induced collagen breakdown in human dermal fibroblasts with knockdown of NF-E2-related factor 2

  • Park, Gunhyuk;Oh, Myung Sook
    • BMB Reports
    • /
    • 제48권8호
    • /
    • pp.467-472
    • /
    • 2015
  • Heat shock increases skin temperature during sun exposure and some evidence indicates that it may be involved in skin aging. The antioxidant response mediated by the transcription factor NF-E2-related factor 2 (Nrf2) is a critically important cellular defense mechanism that serves to limit skin aging. We investigated the effects of heat shock on collagenase expression when the antioxidant defense system was downregulated by knockdown of Nrf2. GSH and collagenases were analyzed, and the expression of inducible Nrf2, HO-1, and NQO1 was measured. HS68 cells were transfected with small interfering RNA against Nrf2. Heat shock induced the downregulation of Nrf2 in both the cytosol and nucleus and reduced the expression of HO-1, GSH, and NQO1. In addition, heat-exposed Nrf2-knockdown cells showed significantly increased levels of collagenase protein and decreased levels of procollagen. Our data suggest that Nrf2 plays an important role in protection against heat shock-induced collagen breakdown in skin. [BMB Reports 2015; 48(8): 467-472]

Heat shock transcription factors and sensory placode development

  • Nakai, Akira
    • BMB Reports
    • /
    • 제42권10호
    • /
    • pp.631-635
    • /
    • 2009
  • The heat shock transcription factor (HSF) family consists of at least three members in mammals and regulates expression of heat shock proteins in response to heat shock and proteotoxic stresses. Especially, HSF1 is indispensable for this response. Members of this family are also involved in development of some tissues such as the brain and reproductive organs. However, we did not know the molecular mechanisms that regulate developmental processes. Involvement of HSFs in the sensory development was implicated by the finding that human hereditary cataract is associated with mutations of the HSF4 gene. Analysis of gene-disrupted mice showed that HSF4 and HSF1 are required for the lens and the olfactory epithelium, respectively. Furthermore, a common molecular mechanism that regulates developmental processes was revealed by analyzing roles of HSFs in the two developmentally-related organs.

Involvement of Putative Heat Shock Element in Transcriptional Regulation of $p21^{WAF1/ClP1/SDl1}$ by Heat Shock

  • Woo, Sang-Hyeok;Oh, Su-Young;Han, Song-Iy;Choi, Yung-Hyun;Kang, Kwang-Il;Yoo, Mi-Ae;Kim, Han-Do;Kang, Ho-Sung
    • Animal cells and systems
    • /
    • 제4권2호
    • /
    • pp.181-186
    • /
    • 2000
  • The expression of $p21^{WAF1/ClP1/SDl1}$, one of the cyclin-dependent kinase inhibitors, is regulated by a variety of transcription factors including p53 and STAT. Heat shock induces the expression of p21 in a temperature- and time-dependent manner. Although the p21 induction by heat shock has been reported to be controlled by p53, a p53-independent mechanism Is also involved. To understand the p53-independent regulation of heat shock-induced p21 expression, we searched the promoter region of p21 gene and found one or two heat shock element (HSE)-like sequences in human, rat, and mouse. Electromobility shift assay (EMSA) showed that heat shock factor (HSF) could bind to these HSE-like sequences In response to heat shock, even though to a lesser extent than to HSE. In addition, p21 promoter deletion analysis revealed that heat shock activated a p21 deletion promoter construct containing the HSE-like sequences but lacking p53-binding sites, but not a promoter construct containing neither HSE-like sequences nor the p53-responsive element. Furthermore, the p21 induction by heat shook was significantly inhibited in confluent cells in which heat shock-induced HSF activation was reduced. These results suggest that the transcriptional regulation of p21 by heat shock may be mediated through activation and binding to HSE-like sequences of HSF.

  • PDF

Histidine (His83) is Essential for Heat Shock Factor 1 (HSF1) Activation in Protecting against Acid pH Stress

  • Lu, Ming;Chang, Ziwei;Park, Jang-Su
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권11호
    • /
    • pp.3405-3409
    • /
    • 2013
  • The activation of heat shock factor 1 (HSF1) can be induced by the changes in environmental pH, but the mechanism of HSF1 activation by acidification is not completely understood. This paper reports that a low pH (pH~6.0) can trigger human HSF1 activation. Considering the involvement of the imidazole group of histidine residues under acid pH stress, an in vitro EMSA experiment, Trp-fluorescence spectroscopy, and protein structural analysis showed that the residue, His83, is the essential for pH-dependent human HSF1-activation. To determine the roles of His83 in the HSF1-mediated stress response affecting the cellular acid resistance, mouse embryo fibroblasts with normal wild-type or mutant mouse HSF1 expression were preconditioned by heating or pH stress. The results suggest that His83 is essential for HSF1 activation or the HSF1-mediated transcription of heat shock proteins, in protecting cells from acid pH stress.

Vinyl-Stilbene Inhibits Human Norovirus RNA Replication by Activating Heat-Shock Factor-1

  • Lee, Ahrim;Sung, Jieun;Harmalkar, Dipesh S.;Kang, Hyeseul;Lee, Hwayoung;Lee, Kyeong;Lee, Choongho
    • Biomolecules & Therapeutics
    • /
    • 제30권1호
    • /
    • pp.64-71
    • /
    • 2022
  • Norovirus (NV) is the most common cause of viral gastroenteritis, with the potential to develop into a fatal disease in those who are immuno-compromised, and effective vaccines and treatments are still non-existent. In this study, we aimed to elucidate the molecular mechanism of the previously identified NV replication inhibitor utilizing a vinyl-stilbene backbone, AC-1858. First, we confirmed the inhibition of the NV RNA replication by a structural analog of AC-1858, AC-2288 with its exclusive cytoplasmic sub-cellular localization. We further validated the induction of one specific host factor, the phosphorylated form of heat shock factor (HSF)-1, and its increased nuclear localization by AC-1858 treatment. Finally, we verified the positive and negative impact of the siRNA-mediated downregulation and lentivirus-mediated overexpression of HSF-1 on NV RNA replication. In conclusion, these data suggest the restrictive role of the host factor HSF-1 in overall viral RNA genome replication during the NV life cycle.

Effect of BIS depletion on HSF1-dependent transcriptional activation in A549 non-small cell lung cancer cells

  • Yun, Hye Hyeon;Baek, Ji-Ye;Seo, Gwanwoo;Kim, Yong Sam;Ko, Jeong-Heon;Lee, Jeong-Hwa
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제22권4호
    • /
    • pp.457-465
    • /
    • 2018
  • The expression of BCL-2 interacting cell death suppressor (BIS), an anti-stress or anti-apoptotic protein, has been shown to be regulated at the transcriptional level by heat shock factor 1 (HSF1) upon various stresses. Recently, HSF1 was also shown to bind to BIS, but the significance of these protein-protein interactions on HSF1 activity has not been fully defined. In the present study, we observed that complete depletion of BIS using a CRISPR/Cas9 system in A549 non-small cell lung cancer did not affect the induction of heat shock protein (HSP) 70 and HSP27 mRNAs under various stress conditions such as heat shock, proteotoxic stress, and oxidative stress. The lack of a functional association of BIS with HSF1 activity was also demonstrated by transient downregulation of BIS by siRNA in A549 and U87 glioblastoma cells. Endogenous BIS mRNA levels were significantly suppressed in BIS knockout (KO) A549 cells compared to BIS wild type (WT) A549 cells at the constitutive and inducible levels. The promoter activities of BIS and HSP70 as well as the degradation rate of BIS mRNA were not influenced by depletion of BIS. In addition, the expression levels of the mutant BIS construct, in which 14 bp were deleted as in BIS-KO A549 cells, were not different from those of the WT BIS construct, indicating that mRNA stability was not the mechanism for autoregulation of BIS. Our results suggested that BIS was not required for HSF1 activity, but was required for its own expression, which involved an HSF1-independent pathway.

SB202190- and SB203580-Sensitive p38 Mitogen-Activated Protein Kinase Positively Regulates Heat Shock- and Amino Acid Analog-Induced Heat Shock Protein Expression

  • Kim, Sun-Hee;Han, Song-Iy;Oh, Su-Young;Seo, Myoung-Suk;Park, Hye-Gyeong;Kang, Ho-Sung
    • 대한의생명과학회지
    • /
    • 제9권2호
    • /
    • pp.59-65
    • /
    • 2003
  • When cells are exposed to proteotoxic stresses such as heat shock, amino acid analogs, and heavy metals, they increase the synthesis of the heat shock proteins (HSPs) by activating the heat shock transcription factor 1 (HSF1), whose activity is controlled via multiple steps including homotrimerization, nuclear translocation, DNA binding, and hyperphosphorylation. Under unstressed conditions, the HSF1 activity is repressed through its constitutive phosphorylation by glycogen synthase kinase 3$\beta$ (GSK3$\beta$), extracellular regulated kinase 1/2 (ERK1/2), and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK). However, the protein kinase (s) responsible for HSF1 hyperphosphorylation and activation is not yet identified. In the present study, we observed that profile of p38 mitogen-activated protein kinase (p38MAPK) activation in response to heat shock was very similar to those of HSF1 hyperphosphorylation and nuclear translocation. Therefore, we investigated whether p38MAPK is involved in the heat shock-induced HSF1 activation and HSP expression. Here we show that the p38MAPK inhibitors, SB202190 and SB203580, but not other inhibitors including the MEK1/2 inhibitor PD98059 and the PI3-K inhibitor LY294002 and wortmannin, suppress HSF1 hyperphosphorylation in response to heat shock and L-azetidine 2-carboxylic acid (Azc), but not to heavy metals. Furthermore, heat shock-induced HSF1-DNA binding and HSP72 expression was specifically prevented by the p38MAPK inhibitors, but not by the MEK1/2 inhibitor and the PI3-K inhibitors. These results suggest that SB202190- and SB203580-sensitive p38MAPK may positively regulate HSP gene regulation in response to heat shock and amino acid analogs.

  • PDF

Heat Shock Factor 1 Predicts Poor Prognosis of Gastric Cancer

  • Kim, Seok-Jun;Lee, Seok-Cheol;Kang, Hyun-Gu;Gim, Jungsoo;Lee, Kyung-Hwa;Lee, Seung-Hyun;Chun, Kyung-Hee
    • Yonsei Medical Journal
    • /
    • 제59권9호
    • /
    • pp.1041-1048
    • /
    • 2018
  • Purpose: Heat shock factor 1 (HSF1) is a key regulator of the heat shock response and plays an important role in various cancers. However, the role of HSF1 in gastric cancer is still unknown. The present study evaluated the function of HSF1 and related mechanisms in gastric cancer. Materials and Methods: The expression levels of HSF1 in normal and gastric cancer tissues were compared using cDNA microarray data from the NCBI Gene Expression Omnibus (GEO) dataset. The proliferation of gastric cancer cells was analyzed using the WST assay. Transwell migration and invasion assays were used to evaluate the migration and invasion abilities of gastric cancer cells. Protein levels of HSF1 were analyzed using immunohistochemical staining of tissue microarrays from patients with gastric cancer. Results: HSF1 expression was significantly higher in gastric cancer tissue than in normal tissue. Knockdown of HSF1 reduced the proliferation, migration, and invasion of gastric cancer cells, while HSF1 overexpression promoted proliferation, migration, and invasion of gastric cancer cells. Furthermore, HSF1 promoted the proliferation of gastric cancer cells in vivo. In Kaplan-Meier analysis, high levels of HSF1 were associated with poor prognosis for patients with gastric cancer (p=0.028). Conclusion: HSF1 may be closely associated with the proliferation and motility of gastric cancer cells and poor prognosis of patients with gastric cancer. Accordingly, HSF1 could serve as a prognostic marker for gastric cancer.