• Title/Summary/Keyword: Heat shock RNA-1

Search Result 97, Processing Time 0.03 seconds

Characterization of Heat Shock Protein 70 in Freshwater Snail, Semisulcospira coreana in Response to Temperature and Salinity (담수산다슬기, Semisulcospira coreana의 열충격단백질 유전자 특성 및 발현분석)

  • Park, Seung Rae;Choi, Young Kwang;Lee, Hwa Jin;Lee, Sang Yoon;Kim, Yi Kyung
    • Journal of Marine Life Science
    • /
    • v.5 no.1
    • /
    • pp.17-24
    • /
    • 2020
  • We have identified a heat shock protein 70 gene from freshwater snail, Semisulcospira coreana. The freshwater snail HSP70 gene encode a polypeptide of 639 amino acids. Based on bioinformatic sequence characterization, HSP70 gene possessed three classical signature motifs and other conserved residues essential for their functionality. The phylogenetic analysis showed that S. coreana HSP70 had closet relationship with that of golden apple snails, Pomacea canaliculata. The HSP70 mRNA level was significantly up-regulated in response to thermal and salinity challenges. These results are in agreement with the results of other species, indicating that S. coreana HSP70 used be a potential molecular marker in response to external stressors and the regulatory process related to the HSP70 transcriptional response can be highly conserved among species.

Molecular Cloning and Expression Analysis of Red-spotted Grouper, Epinephelus akaara Hsp70 (수온변화에 따른 붉바리(Epinephelus akaara)의 heat shock protein (Hsp) 70 mRNA 발현)

  • Min, Byung Hwa;Hur, Jun Wook;Park, Hyung Jun
    • Journal of Life Science
    • /
    • v.28 no.6
    • /
    • pp.639-647
    • /
    • 2018
  • A new heat shock protein 70 was identified in red-spotted grouper (Epinephelus akaara) based on an expression analysis. The cDNA of red-spotted grouper Hsp70 (designated RgHsp70) was cloned by the rapid amplification of cDNA ends (RACE) techniques. The full-length of RgHsp70 cDNA was 2,152 bp, consisting of a 5'-terminal untranslated region (UTR) of 105 bp, a 3'-terminal UTR of 274 bp, and an open reading frame (ORF) of 1,773 bp that encode a polypeptide of 590 amino acids with a theoretical molecular weight of 64.9 kDa and an estimated isoelectric point of 5.2. Multiple alignment and phylogenetic analyses revealed that the RgHsp70 gene shares a high similarity with other Hsp70 fish genes. RgHsp70 contained all three classical Hsp70 family signatures. The results indicated the RgHsp70 is a member of the heat shock protein 70 family. RgHsp70 mRNA was predominately expressed in the liver, with reduced expression noted in the head-kidney tissues. The expression analysis of different water temperatures (21, 18, 15 and $12^{\circ}C$) for sampled livers revealed that expression gradually increased at $12^{\circ}C$ compared to $21^{\circ}C$. In this study, the effects of water temperature lowering on the physiological conditions were investigated, and the results revealed that novel RgHsp70 may be an important molecule involved in stress responses.

Characterization and gene expression of heat shock protein 90 in marine crab Charybdis japonica following bisphenol A and 4-nonylphenol exposures

  • Park, Kiyun;Kwak, Ihn-Sil
    • Environmental Analysis Health and Toxicology
    • /
    • v.29
    • /
    • pp.2.1-2.7
    • /
    • 2014
  • Objectives Heat shock protein 90 (HSP90) is a highly conserved molecular chaperone important in the maturation of a broad spectrum of protein. In this study, an HSP90 gene was isolated from Asian paddle crab, Charybdis japonica, as a bio-indicator to monitor the marine ecosystem. Methods This work reports the responses of C. japonica HSP90 mRNA expression to cellular stress by endocrine disrupting chemicals (EDCs), such as bisphenol A (BPA) and 4-nonylphenol (NP) using real-time. reverse transcription polymerase chain reaction. Results The deduced amino acid sequence of HSP90 from C. japonica shared a high degree of homology with their homologues in other species. In a phylogenetic analysis, C. japonica HSP90 is evolutionally related with an ortholog of the other crustacean species. The expression of HSP90 gene was almost distributed in all the examined tissues of the C. japonica crab but expression levels varied among the different body parts of the crabs. We examined HSP90 mRNA expression pattern in C. japonica crabs exposed to EDCs for various exposure times. The expression of HSP90 transcripts was significantly increased in C. japonica crabs exposed to BPA and NP at different concentrations for 12, 24, 48 and 96 hours. The mRNA expression of HSP90 gene was significantly induced in a concentration- and time-dependent manner after BPA or NP exposures for 96 hours. Conclusions Taken together, expression analysis of Asian paddle crab HSP90 gene provided useful molecular information about crab responses in stress conditions and potential ways to monitor the EDCs stressors in marine environments.

HSP27 CONTRIBUTES TO ESTROGEN REGULATION OF OSTEOBLAST APOPTOSIS (조골세포 세포사멸의 Estrogen 조절에 대한 Hsp27의 영향에 관한 연구)

  • Jang, Hyon-Seok;Eune, Jung-Ju;Rim, Jae-Suk;Kwon, Jong-Jin;Choi, Cheol-Min
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.30 no.4
    • /
    • pp.323-330
    • /
    • 2004
  • Estrogen may promote osteoblast/osteocyte viability by limiting apoptotic cell death. We hypothesize that hsp27 is an estrogen- regulated protein that can promote osteoblast viability by increasing osteoblast resistance to apoptosis. The purpose of this study was to determine the effect of estrogen treatment and heat shock on $TNF{\alpha}$ - induced apoptosis in the MC3T3-E1 cell line. Cells were treated with 0 - 100 nM $17{\beta}$ estradiol (or ICI 182780) for 0 - 24 hours before heat shock. After recovery, apoptosis was induced by treatment with 0 - 10 ng/ml TNF${\alpha}$. Hsp levels were evaluated by Northern and Western analysis using hsp27, hsp47, hsp70c and hsp70i - specific reagents. Apoptosis was revealed by in situ labeling with Terminal Deoxyribonucleotide Transferase (TUNEL). A 5 - fold increase in hsp27 protein and mRNA was noted after 5 hours of treatment with 10 - 20 nM $17{\beta}$ estradiol prior to heat shock. Increased abundance of hsp47, hsp70c or hsp70i was not observed. TUNEL indicated that estrogen treatment also reduced (50%) MC3T3-E1 cell susceptibility to $TNF{\alpha}$ - induced apoptosis. Treatment with hsp27-specific antisense oligonucleotides prevented hsp27 protein expression and abolished the protective effects of heat shock and estrogen treatment on $TNF{\alpha}$- induced apoptosis. Hsp27 is a determinant of osteoblast apoptosis, and estrogen treatment increases hsp27 levels in cultured osteoblastic cells. Hsp27 contributes to the control of osteoblast apoptosis and may be manipulated by estrogenic or alternative pathways for the improvement of bone mass.

Fluctuation of Temperature Induces Pathogenicity of Streptococcus iniae and Changes of Immunology Related Genes of Korean Rockfish, Sebastes schlegeli

  • EunYoung Min;Seon-Myeong Jeong;Hyun-Ja Han;Miyoung Cho
    • Korean Journal of Ecology and Environment
    • /
    • v.56 no.4
    • /
    • pp.420-429
    • /
    • 2023
  • This study was designed to examine the immune response in Korean rockfish during water temperature fluctuation and to elucidate the factors contributing to streptococcal pathogenesis in cultured Korean rockfish, S. schlegeli. We investigated cumulative mortality against Streptococcus iniae (FP5228 strain) infection in the exposed Korean rockfish (39.7±5.8 g) to environmentally relevant temperature (Control, 23℃; High temperature, 28℃ and 23℃ and 28℃ with 12 hours interval exchange, 23↔28℃) for 48 hours. Also, the expression of the mRNA related to the immune response genes (heat shock protein 70, interleukin1β, lysozyme g-type and thioredoxin-like 1) were measured in spleen and head kidney by real-time PCR analysis in the exposed fish to thermal stress. In this study, the combined stress with bacterial challenge in fishes exposed to thermal stress lowered the survival rate than that of control (23℃). The cumulative mortality in the group of control, 28℃ and 23↔28℃ was 24%, 24% and 40% (P<0.05), respectively. Also, thermal stress modulated the mRNA level of immune related genes; heat shock protein 70, interleukin-1β, lysozyme g-type and thioredoxin-like 1 in Korean rockfish. The present study indicates that a high and sudden water temperature change affect immune responses and reduce the disease resistance in Korean rockfish.

Translational Control of The Heat Shock Gene Expression in Carrot (당근의 열충격 유전자 발현의 번역과정에서의 조절)

  • Cheol Ho HWANG
    • Korean Journal of Plant Tissue Culture
    • /
    • v.22 no.1
    • /
    • pp.19-23
    • /
    • 1995
  • Carrot cultured cells are able to respond to a temperature increase by inducing a set of new proteins, heat shock proteins (HSP). Such an induction of the HS gene was known to be achieved mainly at the level of transcription. However there has been an increasing number of evidences showing that a translational control was involved in the regulation of the HS gene expression. A comparison of HSP synthesized in vivo to in vivo (represent for mRNA level since the amount of the proteins produced by in vivo translation system will be proportional to an amount of the corresponding mRNA)showed no correlation between the amount of HS mRNA and the amount of the corresponding HSP at $30^{\circ}C$, It appears that a translational control may exert a major role in the expression of HS gene in carrot callus cells at $30^{\circ}C$.

  • PDF

Molecular cloning of metal-responsive transcription factor-1 (MTF-1) and transcriptional responses to metal and heat stresses in Pacific abalone, Haliotis discus hannai

  • Lee, Sang Yoon;Nam, Yoon Kwon
    • Fisheries and Aquatic Sciences
    • /
    • v.20 no.7
    • /
    • pp.9.1-9.13
    • /
    • 2017
  • Background: Metal-responsive transcription factor-1 (MTF-1) is a key transcriptional regulator playing crucial roles in metal homeostasis and cellular adaptation to diverse oxidative stresses. In order to understand cellular pathways associated with metal regulation and stress responses in Pacific abalone (Haliotis discus hannai), this study was aimed to isolate the genetic determinant of abalone MTF-1 and to examine its expression characteristics under basal and experimentally stimulated conditions. Results: The abalone MTF-1 shared conserved features in zinc-finger DNA binding domain with its orthologs; however, it represented a non-conservative shape in presumed transactivation domain region with the lack of typical motifs for nuclear export signal (NES) and Cys-cluster. Abalone MTF-1 promoter exhibited various transcription factor binding motifs that would be potentially related with metal regulation, stress responses, and development. The highest messenger RNA (mRNA) expression level of MTF-1 was observed in the testes, and MTF-1 transcripts were detected during the entire period of embryonic and early ontogenic developments. Abalone MTF-1 was found to be Cd inducible and highly modulated by heat shock treatment. Conclusion: Abalone MTF-1 possesses a non-consensus structure of activation domains and represents distinct features for its activation mechanism in response to metal overload and heat stress. The activation mechanism of abalone MTF-1 might include both indirect zinc sensing and direct de novo synthesis of transcripts. Taken together, results from this study could be a useful basis for future researches on stress physiology of this abalone species, particularly with regard to heavy metal detoxification and thermal adaptation.

Gene Expression and Response of Arabidopsis AtSIZ3 Mutants to Temperature and Drought Stress (애기장대 AtSIZ3 변이형의 온도 및 건조 스트레스에 대한 반응과 유전자 발현)

  • Kwon, Soon-Tae;Jeong, Hyung-Jin;Hasegawa, Paul M.
    • Korean Journal of Plant Resources
    • /
    • v.23 no.1
    • /
    • pp.25-30
    • /
    • 2010
  • This study was carried out to understand the effect of low temperature($4^{\circ}C$), heat shock($37^{\circ}C$) and drought stresses on the growth and gene expression of Arabidopsis ATSIZ3(at1g08910) mutants. The seedling growth of SIZ3-mutants were markedly inhibited by the treatment of heat shock or chilling stresses. However, there was no significant differences between wild type and SIZ3-mutants in seeding fresh weight. As compared to wild type plants, SIZ3-mutants showed 63.9% inhibition of seedling fresh weight by the treatment of 10 days drought stress, suggesting that SIZ3 is involved in the resistance of Arabidopsis to drought stress. Base on RT-PCR analysis, expression of SIZ3 mRNA in the wild type showed 20% inhibition by chilling stress, 3.7 and 4.5 fold increase by the treatment of heat shock or drought stresses, respectively.

Molecular Cloning of the cDNA of Heat Shock Protein 88 Gene from the Entomopathogenic Fungus, Paecilomyces tenuipes Jocheon-1

  • Liu, Ya-Qi;Park, Nam Sook;Kim, Yong Gyun;Kim, Keun Ki;Park, Hyun Chul;Son, Hong Joo;Hong, Chang Ho;Lee, Sang Mong
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.28 no.2
    • /
    • pp.71-84
    • /
    • 2014
  • The full-length heat shock protein 88 (HSP88) complementary DNA (cDNA) of Paecilomyces tenuipes Jocheon-1 was obtained by screening the Paecilomyces tenuipes (P. tenuipes) Jocheon-1 Uni-Zap cDNA library and performing 5' RACE polymerase chain reaction (PCR). The P. tenuipes Jocheon-1 HSP88 cDNA contained an open reading frame (ORF) of 2,139-basepair encoding 713 amino acid residues. The deduced amino acid sequence of the P. tenuipe s Jocheon-1 HSP88 cDNA showed 77% identity to Nectria haematococca HSP88 and 45-76% identity to other fungal homologous HSP88s. Phylogenetic analysis and BLAST program analysis confirmed that the deduced amino acid sequences of the P. tenuipes Jocheon-1 HSP88 gene belonged to the ascomycetes group within the fungal clade. The P. tenuipes Jocheon-1 HSP88 also contained the conserved ATPase domain at the N-terminal region. The cDNA encoding P. tenuipes Jocheon-1 HSP88 was expressed as an 88 kilodalton (kDa) polypeptide in baculovirus-infected insect Sf9 cells. Under higher temperature conditions for the growth of the entomopathogenic fungus, mRNA expression of P. tenuipes Jocheon-1 HSP88 was quantified by real time PCR (qPCR). The results showed that heat shock stress induced a higher level of mRNA expression compared to normal growth conditions.

Expression and Localization of Heat Shock Protein 70 in Frozen-Thawed IVF and Nuclear Transfrred Bovine Embryos

  • Park, Y.J;S.J Song;J.T Do;B.S Yoon;Kim, A.J;K.S Chung;Lee, H.T
    • Proceedings of the Korean Society of Embryo Transfer Conference
    • /
    • 2002.11a
    • /
    • pp.78-78
    • /
    • 2002
  • The role of heat shock proteins in shielding organism from environmental stress is illustrated by the large-scale synthesis of these protein by the organism studied to date. However, recent evidence also suggests an important role for heat shock protein in fertilization and early development of mammalian embryos. Effects of elevated in vitro temperature on in vitro produced bovine embryos were analysed in order to determine its impact on the expression of heat shock protein 70 (HSP70) by control and frozen-thawed after in vitro fertilization (IVF) or nuclear transfer (NT). The objective of this study was to assess the developmental potential in vitro produced embryos with using of the various containers and examined expression and localization of heat shock protein 70 after it's frozen -thawed. For the vitrification, in vitro produced embryos at 2 cell, 8 cell and blastocysts stage after IVF and NT were exposed the ethylene glycol 5.5 M freezing solution (EG 5.5) for 30 sec, loaded on each containers such EM grid, straw and cryo-loop and then immediately plunged into liquid nitrogen. Thawed embryos were serially diluted in sucrose solution, each for 1 min, and cultured in CRI-aa medium. Survival rates of the vitrification production were assessed by re-expanded, hatched blastocysts. There were no differences in the survival rates of IVF using EM grid, cryo-loop. However, survival rates by straw were relatively lower than other containers. Only, nuclear transferred embryos survived by using cryo-loop. After IVF or NT, in vitro matured bovine embryos 2 cell, 8 cell and blastocysts subjected to control and thawed conditions were analysed by semiquantitive reverse transcription polymerase chain reaction methods for hsp 70 mRNA expression. Results revealed the expression of hsp 70 mRNA were higher thawed embryos than control embryos. Immunocytochemistry used to localization the hsp70 protein in embryos. Two, 8-cell embryos derived under control condition was evenly distributed in the cytoplasm but appeared as aggregates in some embryos exposed frozen-thawed. However, under control condition, blastocysts displayed aggregate signal while Hsp70 in frozen-thawed blastocysts appeared to be more uniform in distribution.

  • PDF