DOI QR코드

DOI QR Code

Molecular Cloning of the cDNA of Heat Shock Protein 88 Gene from the Entomopathogenic Fungus, Paecilomyces tenuipes Jocheon-1

  • Liu, Ya-Qi (Department of Life Science & Environmental Biochemistry, College of Natural Resources and Life Science, Pusan National University) ;
  • Park, Nam Sook (Department of Life Science & Environmental Biochemistry, College of Natural Resources and Life Science, Pusan National University) ;
  • Kim, Yong Gyun (Department of Life Science & Environmental Biochemistry, College of Natural Resources and Life Science, Pusan National University) ;
  • Kim, Keun Ki (Department of Life Science & Environmental Biochemistry, College of Natural Resources and Life Science, Pusan National University) ;
  • Park, Hyun Chul (Department of Life Science & Environmental Biochemistry, College of Natural Resources and Life Science, Pusan National University) ;
  • Son, Hong Joo (Department of Life Science & Environmental Biochemistry, College of Natural Resources and Life Science, Pusan National University) ;
  • Hong, Chang Ho (Department of Life Science & Environmental Biochemistry, College of Natural Resources and Life Science, Pusan National University) ;
  • Lee, Sang Mong (Department of Life Science & Environmental Biochemistry, College of Natural Resources and Life Science, Pusan National University)
  • Received : 2014.06.05
  • Accepted : 2014.06.20
  • Published : 2014.06.30

Abstract

The full-length heat shock protein 88 (HSP88) complementary DNA (cDNA) of Paecilomyces tenuipes Jocheon-1 was obtained by screening the Paecilomyces tenuipes (P. tenuipes) Jocheon-1 Uni-Zap cDNA library and performing 5' RACE polymerase chain reaction (PCR). The P. tenuipes Jocheon-1 HSP88 cDNA contained an open reading frame (ORF) of 2,139-basepair encoding 713 amino acid residues. The deduced amino acid sequence of the P. tenuipe s Jocheon-1 HSP88 cDNA showed 77% identity to Nectria haematococca HSP88 and 45-76% identity to other fungal homologous HSP88s. Phylogenetic analysis and BLAST program analysis confirmed that the deduced amino acid sequences of the P. tenuipes Jocheon-1 HSP88 gene belonged to the ascomycetes group within the fungal clade. The P. tenuipes Jocheon-1 HSP88 also contained the conserved ATPase domain at the N-terminal region. The cDNA encoding P. tenuipes Jocheon-1 HSP88 was expressed as an 88 kilodalton (kDa) polypeptide in baculovirus-infected insect Sf9 cells. Under higher temperature conditions for the growth of the entomopathogenic fungus, mRNA expression of P. tenuipes Jocheon-1 HSP88 was quantified by real time PCR (qPCR). The results showed that heat shock stress induced a higher level of mRNA expression compared to normal growth conditions.

Keywords

References

  1. Bendz H, Ruhland SC, Pandya MJ, Hainzl O, Riegelsberger S, Brauchle C, Mayer MP, Buchner J, Issels RD, Noessner E (2007) Human heat shock protein 70 enhances tumor antigen presentation through complex formation and intracellular antigen delivery without innate immune signaling. J. Biol. Chem. 282 (43), 3168-31702.
  2. Benjamin IJ, McMillan DR (1998) Stress (heat shock) proteins: molecular chaperones in cardiovascular biology and disease. Circ. Res. 83, 117-132. https://doi.org/10.1161/01.RES.83.2.117
  3. Binder RJ (2008) Heat-shock protein-based vaccines for cancer and infectious disease. Expert. Rev. Vaccines. 7(3), 383-93. https://doi.org/10.1586/14760584.7.3.383
  4. Bork P, Sander C,Valencia A (1992) An ATPase domain common to prokaryotic cell cycle proteins, sugar kinases, actin and Hsp70 heat shock proteins. Proc Natl Acad Sci USA. 89, 7290-7294. https://doi.org/10.1073/pnas.89.16.7290
  5. Buchberger A, Valencia A, McMacken R, Sander C, Bukau B (1994) The chaperone function of DNA K requires the coupling of ATPase activity with substrate binding through residue E171. EMBO J. 13, 1687-1695.
  6. Burnie JP, Carter TL, Hodgetts SJ, Matthews RC (2006) Fungal heatshock proteins in human disease. Microbilo Rev. 30, 53-88
  7. Davis TWNg (2004) Heat/stress responses. Encyclo Biol Chem 2, 343-347.
  8. Ding XZ, Smallridge RC, Galloway RJ, Kiang JG (1996) Increases in HSF1 translocation and synthesis in human epidermoid A-431 cells:role of protein kinase C and($Ca^{2+}$)i. J. Investig. Med. 44, 144-153.
  9. Ellis J (1987) Proteins as molecular chaperones. Nature. 328, 378-379. https://doi.org/10.1038/328378a0
  10. Fan GC (2005) Hsp20 and its cardioprotection. Cardiovasc. Med. 15(4), 138-141.
  11. Flaherty KM, McKay DB, Kabsch W, Holmes KC (1991) Similarity of the three-dimensional structures of actin and the ATPase fragment of a 70-kDa heat shock cognate protein. Proc. Natl. Acad. Sci. USA. 88, 5041-5045. https://doi.org/10.1073/pnas.88.11.5041
  12. Hammerer LA (2001) Hypoxia induces heat shock protein expression in human coronary artery bypass grafts. Cardiovasc. Res. 50(1), 115-124. https://doi.org/10.1016/S0008-6363(01)00198-5
  13. Hartl FU, Martin J, Neupert W (1992) Protein folding in the cell: the role of molecular chaperones Hsp70 and Hsp60. Annu. Rev. Biophys. Biomol. Struct. 21, 293-322. https://doi.org/10.1146/annurev.bb.21.060192.001453
  14. Johnston D, Opperman H, Jackson J, Levinson W (1980) Induction of four proteins in chick embryo cells by sodium arsenite. J. Biol. Chem. 255, 6975-6980.
  15. Kelley PM, Schlesinger MJ (1978) The effect of amino acid analogues and heatshock on gene expression in chicken embryo fibroblasts. CELL 15, 1277-1286. https://doi.org/10.1016/0092-8674(78)90053-3
  16. Kumar S, Tamura K, Nei M (1994) MEGA: Molecular evolutionary genetics analysis software for microcomputers. Comput Appl Biosci. 10, 189-191.
  17. Lemaux P, Herendeen S, Bloch P, Niedhardt F (1978) Transient rates of synthesis of individual polypeptides in E.coli following temperature shifts. CELL. 13, 427-434. https://doi.org/10.1016/0092-8674(78)90317-3
  18. Levinson W, Oppermann H, Jackson J (1980) Transition series metals and sulfhydryl reagents induce the synthesisi of four proteins in eukaryotic cells. Biochem. Biophys. Acta. 606, 170-180
  19. Lee SM, Park NS, Jin BR, Kang HS, Jung JH, Park E (2006) Effects of Paecilomyces tenuipes cultivated in egg yolk on lipid metabolism in rats on a high fat-cholesterol diet. J Med Food. 9, 214-22. https://doi.org/10.1089/jmf.2006.9.214
  20. Li GC, Laszlo A (1985) Amino acid analogs while inducing heat shock proteins sensitize CHO cells to thermal damage. J. Cell Physiol. 122, 91-97. https://doi.org/10.1002/jcp.1041220114
  21. Lindquist S (1986) The heat shock response. Annu Rev Biochem. 55, 1151-1191. https://doi.org/10.1146/annurev.bi.55.070186.005443
  22. Liu YQ, Park NS, Kim YG, Kim KK, Park HC, Son HJ, Lee SM (2012) Comparison of the Genomic Structure of the Heat Shock Protein 88(Hsp88) Genes in the Four Entomopathogenic Fungal Strains, Paecilomyces tenuipes Jocheon-1, P. tenuipes, Cordyceps militaris, and C. pruinosa. Int. J. Indust. Entomol. 25(1), 99-110. https://doi.org/10.7852/ijie.2012.25.1.099
  23. Mallouk Y, Vayssier-Taussat, M, Bonventre JV, Polla BS (1999) Heat shock protein 70 and ATP as partners in cell homeostasis. Int. J. Mol. Med. 4, 463-74.
  24. Manjunata HB, Rajesh RK, Aparna HS (2010) Silkworm thermal biolgy: A review of heat shock response, heat shock proteins and heat acclimation in the domesticated silkworm, Bombyx mori. Journal of Insect Science. 10(204), 1-16
  25. Martin J, Ulrich HF (1997) Chaperone-assisted protein folding. Curr. Opin. Struct. Biol. 7, 41-52. https://doi.org/10.1016/S0959-440X(97)80006-1
  26. McAlister L, Finkelstein DB (1980) Heat shock proteins and thermal resistance in yeast. Biochem. Biophppys. Res. Commun. 93, 819-924. https://doi.org/10.1016/0006-291X(80)91150-X
  27. McLemore EC, Tessier DJ, Thresher J, Komalavilas P, Brophy CM (2005) Role of the small heat shock proteins in regulating vascular smooth muscle tone. Journal of the College of Surgeons. 201(1), 30-6.
  28. Miller MJ, Xuong NH, Guideschek EP (1979) A response of protein synthesis to temperature shift in the yeast saccharocesmy cerevidiae. proc. Nat. Acad. Sci. U.S.A. 76, 5222-5225. https://doi.org/10.1073/pnas.76.10.5222
  29. Nishikawa M, Takemoto S, Takakura Y (2008) Heat shock protein derivatives for delivery of antigens to antigen presenting cells. Int. J. Pharm. 354 (1-2), 23-7. https://doi.org/10.1016/j.ijpharm.2007.09.030
  30. O'Reilly DR, Miller LK, Luckow VA (1992) Baculovirus Expression Vectors:A Laboratory Manual, W.H. Freeman&Co., New York.
  31. Peterson NS, Mitchell H (1985) Heat shock proteins in comprehensive insect. Physiol Biochem Pharmacol. 10, 347-365.
  32. Plesofsky-Vig N, Brambl R (1998) Characterization of an 88-kDa heat shock protein of Neurosporacrassathat interacts with Hsp30. J Biol Chem. 273, 11335-11341. https://doi.org/10.1074/jbc.273.18.11335
  33. Pouyssegur J, Shiu PC, Pastan I (1977) Induction of two transformationsensitive membrane polypeptides in normal fibroblasts by a block in glycoprotein synthesis or glucose deprivation. Cell. 11, 941-947. https://doi.org/10.1016/0092-8674(77)90305-1
  34. Ritossa F (1962) New Puffing Pattern Induced by Temperature Shock and DNP in Drosophila. Experiential. 18, 571-573. https://doi.org/10.1007/BF02172188
  35. Routray S, Sunkavalli A, Swain N, Shankar AA (2013) Emphasizing on heat shock protein 90's utility in head and neck squamous cell carcinoma treatment. J. Can. Res. Ther. 9, 583-586. https://doi.org/10.4103/0973-1482.126451
  36. Saibil H (2000) Molecular chaperones: containers and surfaces for folding, stabilizing or unfolding proteins. Curr. Opin. Struct. Biol. 10(2), 251-258. https://doi.org/10.1016/S0959-440X(00)00074-9
  37. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 4, 406-425.
  38. Schlesinger MJ (1990) Heat Shock Proteins. J. Biol. Chem. 265(21), 12111-12114.
  39. Sonya D, Coaxum JL, Martin RM (2003) Overexpression of heat shock proteins differentially modulates protein kinase C expression in rat neonatal cardiomyocytes. Cell Stress Chaperones. 8(4), 297-302. https://doi.org/10.1379/1466-1268(2003)008<0297:OOHSPD>2.0.CO;2
  40. Shim JK, Bang HS, Lee KY (2012) High temperature interrupts initial egg diapauses in Paratlanticus ussuriensis and induces expression of a heat shock protein 70 gene. Journal of Asia-Pacific Entomology. 15, 5-11. https://doi.org/10.1016/j.aspen.2011.08.002
  41. Soremsen JG, Kristensen TN, Loeschcke V (2003) The evolutionary and ecological role of heat shock proteins. Ecology Letters. 6, 1025-1037. https://doi.org/10.1046/j.1461-0248.2003.00528.x
  42. Tissieres A, Mitchell HK, Tracy U (1974) Protein synthesis in salivary glands of Drosophila melanogaster: relation to chromosome puffs. J. Mol. Biol. 84, 389-398. https://doi.org/10.1016/0022-2836(74)90447-1
  43. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequenceweighting, position-specific gap penalties and weight matrix choice. NucleicAcids Res. 22, 4673-4680. https://doi.org/10.1093/nar/22.22.4673
  44. Tsan MF, Gao B (2009) Heat shock proteins and immune system. Journal of Leukocyte Biology. 85, 905-910. https://doi.org/10.1189/jlb.0109005
  45. Vaughn JL, Goodwin RH, Thompkins GJ, McCawley P (1977) The establishment of two insect cell lines from the insect spodoptera frugiperda (Lepidoptera: Noctuidae). In Vitro. 13, 213-217. https://doi.org/10.1007/BF02615077
  46. Walter S, Buchner J (2002) Molecular chaperones--cellular machines for protein folding. Angew. Chem. Int. Ed. Engl. 41(7), 1098-113. https://doi.org/10.1002/1521-3773(20020402)41:7<1098::AID-ANIE1098>3.0.CO;2-9
  47. Welch WJ (1991) The role of heat shock protein as molecular chaperones. Curr Opin. Cell Biol. 3(6), 1033-8. https://doi.org/10.1016/0955-0674(91)90125-I
  48. Wild J, Altman E, Yura T, Gross CA (1992) DnaK and DnaJ heat shock proteins participate in protein export in Escherichia coli. Genes Dev. 6(7), 1165-72. https://doi.org/10.1101/gad.6.7.1165
  49. Yamamori T, Ito K, Nakamura Y, Yura T (1978) Transient regulation of protein synthesis in Escherichia coli upon shift-up of growth temperature. J. Bacteriol. 134(3), 1133-1140.