• 제목/요약/키워드: Heat recovery boiler

검색결과 53건 처리시간 0.018초

멀티버너 보일러용 열교환기 모듈 특성 시험 - 부하별 특성 결과 - (Experimental Study on Thermal Characteristics of Heat Exchanger Modules for Multi Burner Boiler - Part Load Test Results -)

  • 김종진;최규성;기호충;강새별
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.1025-1030
    • /
    • 2008
  • We develop heat exchanger modules for a multi-burner boiler. The heat exchanger module is kind of a heat recovery steam generator (HRSG). This heat recovery system has 4 heat exchanger modules. The 1st module consists of 27 bare tubes due to high temperature exhaust gas and the others consist of 27 finned tubes. The maximum steam pressure of each module is 10 bar and tested steam pressure is 4 bar. In order to test these heat exchanger modules, we make a 0.5t/h flue tube boiler (LNG, $40\;Nm^3/h$). The test results of 100% boiler load show that heat transfer rate of 1st module is 49.7 Mcal/h which is 34% of total heat transfer rate and that of 2nd module is 82.6 Mcal/h which is 57% of total heat transfer rate. The reason of higher the heat transfer rate of 2nd module than that of 1st module is that the 2nd heat exchanger module has finned tubes instead of bare tube. The boiler load 50% results show that only 2 heat exchanger modules are needed to extract the heat from the flue gas to water. From this result, it is very important of optimum design of the first finned tube among all water tubes.

  • PDF

3드럼 수관식 폐열보일러의 최적설계 (Optimum Design of Waste Heat Boiler with Water Tube and Three Drum)

  • 이관종;한진호
    • 설비공학논문집
    • /
    • 제18권12호
    • /
    • pp.992-998
    • /
    • 2006
  • This study is to optimize design parameters for waste heat recovery boiler with water tube and three drum. The design optimization considered here is to find the most economic dimension of the boiler considered which results in a minimum cost in producing a unit amount of steam per given period of operation. For this purpose, optimize design have to determine what are the main parameters of affecting the total cost of producing a unit amount of steam which is comprised of manufacturing cost of the boiler, operating cost of the fan etc.

분리형 히트파이프의 저발열량 연료가스 예열시스템에 대한 적용연구 (Application of a Large Scale Heat Pipe System to Preheating the Fuel Gas of Low Heating Value)

  • 박흥수;유갑종;이진호;이용국
    • 대한기계학회논문집B
    • /
    • 제23권9호
    • /
    • pp.1085-1097
    • /
    • 1999
  • A separate heat pipe system capacity of 3,700kW has been developed and applied to preheating the blast furnace gas for recovery of the waste heat from boiler. The system is designed to preheat the blast furnace gas up to $126^{\circ}C$ by using tho boiler exhaust gas of which temperature is $180^{\circ}C{\sim}220^{\circ}C$. The arrangement of the fin tubes as well as the shape of the fin has been carefully determined to minimize the fouling problems. The heat pipe system was found to be stable in circulation of the working fluid and the range of the temperature variation of the preheated blast furnace gas was within $10^{\circ}C$. It was proved through a long-term test that the selected tube arrangement and the shape of the fins are proper to prevent the fouling problems and that the pay-back period of the system Is within one year.

향온시설물에 대한 현열 및 잠열 에너지 회수시스템의 성능해석 (Performance Analysis of Sensible and Latent Energy Recovery System for Thermally Controlled Facilities)

  • 박병규;김무근;김근오
    • 설비공학논문집
    • /
    • 제12권12호
    • /
    • pp.1057-1065
    • /
    • 2000
  • A sizing of sensible and latent energy recovery system with condensing heat exchanger is important to the design of a thermally controlled facilities. The transient system simulation program TRNSYS 14.2/IISiBat has been used to evaluate the energy consumptions of a thermally controlled facilities which consist of boiler, chiller and condensing heat exchanger, The boiler and chiller are selected based on the annual peak loads and controlled to maintain the setting temperature of $14~17^{\circ}C$. Simulation shows that the amount of sensible and latent energy recovered by heat exchanger is almost 20% of total heating load.

  • PDF

ASME Boiler & Pressure Vessel Code에 따른 배열회수보일러 기수분리기의 피로 평가 (Fatigue Evaluation of Steam Separators of Heat Recovery Steam Generators According to the ASME Boiler and Pressure Vessel Code)

  • 이부윤
    • 한국기계가공학회지
    • /
    • 제17권4호
    • /
    • pp.150-159
    • /
    • 2018
  • The present research deals with a finite element analysis and fatigue evaluation of a steam separator of a high-pressure evaporator for the Heat Recovery Steam Generator (HRSG). The fatigue during the expected life of the HRSG was evaluated according to the ASME Boiler and Pressure Vessel Code Section VIII Division 2 (ASME Code). First, based on the eight transient operating conditions prescribed for the HRSG, temperature distribution of the steam separator was analyzed by a transient thermal analysis. Results of the thermal analysis were used as a thermal load for the structural analysis and used to determine the mean cycle temperature. Next, a structural analysis for the transient conditions was carried out with the thermal load, steam pressure, and nozzle load. The maximum stress location was found to be the riser nozzle bore, and hence fatigue was evaluated at that location, as per ASME Code. As a result, the cumulative usage factor was calculated as 0.00072 (much less than 1). In conclusion, the steam separator was found to be safe from fatigue failure during the expected life.

Performance Analysis of Sensible and Latent Energy Recovery System for Thermally Controlled Facility

  • Park, Byung-Kyu;Kim, Moo-Geun;Kim, Geun-Oh
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제9권4호
    • /
    • pp.17-26
    • /
    • 2001
  • Simulation was conducted using TRNSYS to evaluate the thermal performance of a facility. This facility has a condensing-type heat exchanger which is able to recover the latent energy for the purpose of reducing the heating energy in winter. The boiler and chiller are selected based on the annual peak loads and controlled to maintain the facility at the set temperature of 14~$17^\circ{C}$. Supplied energy by the boiler and recovered energy by the heat exchanger were calculated as a function of number of pass through heat exchanger, kind of fuel and hot water velocity. Simulation results show that about 20% of the total heating load can be recovered by the heat exchanger and the amount of latent heat is increasing with the number of pass. This means that the efficiency of the waste energy recovery system can be increased by using a condensing-type heat exchanger rather than a traditional sensible heat exchanger.

  • PDF

공장폐열(工場廢熱) 회수장치(回收裝置)에 관한 연구(硏究) -U자형(字型) 다관식(多管式) 열교환기(熱交換機)의 성능(性能)에 관하여- (Study on the Exhaust Heat Recovery Equipment in a Factory - On the Performance of a U-shape Multitube Heat Exchanger -)

  • 김영복;송현갑
    • Journal of Biosystems Engineering
    • /
    • 제8권2호
    • /
    • pp.49-61
    • /
    • 1983
  • U shape multitube heat exchanger was equipped in the flue to recover the exhaust heat from the boiler system. The fluids of the exhaust heat recovery equipment were the flue gas as the hot fluid, and the water as the cold fluid. The flow geometry of the fluids was cross flow - two pass, the hot fluid being mixed and the cold fluid unmixed. The results of the theoretical and the experimental analysis and the economic evaluation are summarized as follows. 1) The heat exchanger effectiveness and the temperature efficiency of the hot fluid were about 35% when the fuel consumption rate was 140 - 150 L/15min. The temperature efficiency for the cold fluid ranged from 3.0% to 4.5%. The insulation efficiency ranged from 85% to 98%, which was better than the KS air preheater insulation efficiency of 90%. 2) The relationship between the fuel consumption rate, F, and the outlet temperature, $T_{h2}$, of the flue gas from the heat exchanger was $T_{h2}$ = 0.927F + 110. In order to prevent the low temperature corrosion from the coagulation of $SO_3$, it is necessary to maintain the fuel consumption rate above 82 L/15min. 3) The ratio of the exhaust heat from the boiler system to the total energy consumption was about 14.5%. With the installation of the exhaust heat recovery equipment, the energy recovery ratio to the exhaust heat was about 25%. Accordingly, about 3.6% of the total fuel consumption was estimated to be saved. 4) Economic analysis indicated that the installation of the exhaust heat recovery equipment was feasible to save the energy, because the capital reocvery period was only 10 months when the fuel consumption rate was 80 L/15min. 4 months when it was 160 L/15min. 5) Based on the theoretical and the experimental analysis, it was estimated to save the energy of about 18 million Won per year, if four heat exchangers are installed in a factory. 6) A further study is recommended to identify the relationship among the flow rate of the exhaust gas, the size of the heat exchanger and the capacity of the air preheater. For a maximum heat recovery from the exhaust gas an automatic control system is required to control the flow rate of the cold fluid depending on the boiler load.

  • PDF

다단 물유동층 열교환기에 의한 보일러 배가스의 폐열 회수 성능에 관한 연구 (A Study on the Heat Recovery from Boiler Exhaust Gas with Multi-stage Water-fluidized-bed Heat Exchanger)

  • 김대기;박상일;김한덕
    • 대한기계학회논문집B
    • /
    • 제25권12호
    • /
    • pp.1776-1783
    • /
    • 2001
  • Heat recovery from boiler exhaust gas with multi-stage water-fluidized-bed heat exchanger is analyzed in this study. The recovered energy here is not only sensible heat but also latent heat contained in the exhaust gas. In this system direct contact heat transfer occurs while exhaust gas passes through water bed and the thermal energy recovered this way is again delivered to the water circulating through heat exchanging pipes within the bed. Thus the thermal energy of exhaust gas can be recovered as a clean hot water. A computer program developed in this study can predict the heat transfer performance of the system. The results of experiments performed in this study agree well with the calculated ones. The heat and mass transfer coefficients can be fecund through these experiments. The performance increases as the number of stage increases. However at large number of stages the increasing rate becomes very low.

IoT 마이크로 보일러에 대한 기초 연구 (Basic Study on the IoT Micro Boiler)

  • 장성철
    • 사물인터넷융복합논문지
    • /
    • 제8권1호
    • /
    • pp.23-29
    • /
    • 2022
  • 본 연구의 개발대상 제품은 선박 및 발전용 EGB(Exhaust Gas Boiler-폐열보일러) 종류로써 디젤 엔진, 가스 엔진, 가스 터빈 등에서 나오는 배기 가스의 여열을 이용하여 물을 가열하여 고온·고압의 증기나 온수를 발생시키는 열회수 장치이다. 발생된 증기나 온수는 선박의 선실 난방 및 온수 시설이나 HFO Heating, 터빈 구동에 필요한 동력원으로 사용된다. 폐열보일러의 원리는 여열을 가진 고온의 배기 가스가 보일러의 Tube를 통과하면서 물을 데우는 역할을 한다. 데워진 물은 스팀 형태로 선실이나 터빈장치로 보내어져 사용하게 되는 구조이다. 본 연구에서는 EGB의 열전달 부품인 관형 튜브를 Plate Tube로 대체하여 열전달 표면을 늘려 효율을 극대화하는데 목표가 있다.

연소기 후치 가스터빈에 관한 열역학적 연구 (A Thermodynamic Study on Exhaust Heated Gas Turbine Cycle)

  • 박종구;오수철;양옥룡
    • 한국자동차공학회논문집
    • /
    • 제2권6호
    • /
    • pp.18-28
    • /
    • 1994
  • An exhaust-heated gas turbine cycle equipped with a waste heat recovery boiler and ammonia absorption-type refrigerator using waste heat is newly devised and analyzed. The general performance of this cycle is compared with that of the conventional gas turbine cycle. This cycle shows a potential high efficiency. When 1500K of gas turbine inlet temperature the efficiency is 53 percent as compared to 45 percent for a conventional combined cycle. Suction cooling of this cycle leads to improve the thermal efficiency and the specific output.

  • PDF