• 제목/요약/키워드: Heat pump system design

검색결과 293건 처리시간 0.024초

지열을 이용한 학교시설의 냉·난방시스템 효율성분석 -에너지 소비량을 중심으로- (Efficiency Analysis of the HVAC system in the School Facilities Using the Geothermal Energy -Focused on the energy consumption-)

  • 박동순;이재림
    • 교육녹색환경연구
    • /
    • 제6권2호
    • /
    • pp.25-52
    • /
    • 2007
  • This paper is focused on the economical efficiency of the geothermal heat pump system in school. As the importance of problems of environment and energy becomes larger, the development and distribution of energy-saving technology in the whole nation has become influential. This paper is intended, targeting on school buildings scattered all over the country, to evaluate the introduction and possibility of a terrestrial heat system which is in the first stage of introduction in the country, through energy consumption and efficiency in case where a terrestrial heat system is introduced. To do that, the author performed a qualitative analysis of the heat pump system using various terrestrial heat energy and the system introduced to existing school buildings and, through the analysis, made tentative evaluation on the most environment-friendly and energy saving type system. Also, the author performed simulation analysis using a currently typical school building standard and, on the basis of this result, conducted efficiency analysis of various heat pump systems. The conclusion according to synthetical analysis & evaluation can be summarized as follows. In case a heat pump system is introduced to a school building, it was deemed the investment in the early stage would increase, but the investment could be collected within 5~6 years through reduction of large operation expenses. Also, it was analyzed in case of terrestrial heat contracted heat mode using midnight electric power among heat pump systems, not only early investment but also operation expenses could be reduced to a great extent. Accordingly in case the system using terrestrial heat energy is applied to the school buildings that are to be newly built or repaired in the future, it will provide an object-lesson to students as well as contributing to energy saving.

  • PDF

이산화탄소를 적용한 주거용 냉난방 겸용 열펌프 시스템의 시뮬레이션 (Simulation on a Residential Heat Pump System Using $CO_2$)

  • 조홍현;이무연;김용찬
    • 설비공학논문집
    • /
    • 제15권12호
    • /
    • pp.987-995
    • /
    • 2003
  • The performance of a residential heating and cooling system with $CO_2$ is predicted by using a cycle simulation model. The simulations are conducted by varying design parameters and operating conditions. The efficiency of the transcritical cycle can be improved by utilizing the advantages in heat transfer characteristics of $CO_2$ and developing microchannel indoor and outdoor heat exchangers. For the designed system of this study, the predicted COP of the heat pump system is approximately 3.5 in the heating mode and 3.0 in the cooling mode. The predicted optimal discharge pressure for the heat pump system is approximately 11 MPa in the heating mode and 9 MPa in the cooling mode.

지반 투수계수와 양수량 조건이 복수정 지열 히트펌프 시스템의 성능에 미치는 영향 (The Effect of Soil Permeability and Pumping Rate on Performance of Two-well Geothermal Heat Pump System)

  • 조정흠;남유진
    • 한국지열·수열에너지학회논문집
    • /
    • 제11권4호
    • /
    • pp.28-34
    • /
    • 2015
  • The groundwater heat pump (GWHP) systems have great potential for heating-cooling system which use annual constant groundwater temperature for heat source. Generally, the performance of GWHP system significantly depends on the geological and hydraulic properties such as hydraulic conductivity, thermal conductivity, soil condition so on. Therefore, in order to use GWHP systems efficiently, it is necessary to analyze the effect of design factors on the system performance. However, there are a few researches on the optimum design method for the open-loop geothermal system. In this research, the design factor in the open-loop geothermal system was analyzed quantitatively for the optimal design method by using numerical simulation. As a result, it was found that the temperature change of heat source depends on the design factor.

수치 시뮬레이션을 이용한 수직밀폐형 지열시스템의 채열특성에 관한 연구 (Study on the characteristic of heat exchange for vertical geothermal system using the numerical simulation)

  • 남유진;오진환
    • 한국태양에너지학회 논문집
    • /
    • 제34권2호
    • /
    • pp.66-72
    • /
    • 2014
  • Ground source heat pump system can achieve high efficiency of performance by utilizing annually constant underground temperature to provide heat source for space heating and cooling. Generally, the depth of constant-temperature zone under the ground depends on surface heat flux and soil properties. The deeper the ground heat exchanger is installed, the higher the heat exchange rate can be acquired. However, in order to optimally design the system, it is necessary to consider both the installation cost and the system performance. In this study, performance analysis of ground source heat pump system according to the depth has been conducted through the case study.

선형열원 모델과 수정 DST(TRNVDSTP) 모델에 의한 지열 히트펌프 시스템 성능 예측 (Performance Prediction of Geothermal Heat Pump System by Line-Source and Modified DST(TRNVDSTP) Models)

  • 손병후
    • 한국지열·수열에너지학회논문집
    • /
    • 제8권2호
    • /
    • pp.61-69
    • /
    • 2012
  • Geothermal heat pump(GHP) systems have been shown to be an environmentally-friendly, efficient alternative to traditional cooling and heating systems in both residential and commercial applications. Although some experimental work related to performance evaluation of GHP systems with vertical borehole ground heat exchangers for commercial buildings has been done, relatively little has been reported on the performance simulation of these systems. The aim of this study is to evaluate the cooling and heating performance of the GHP system with 30 borehole ground heat exchangers applied to an commercial building($1,210m^2$) in Seoul. For this purpose, a typical design procedure was involved with a combination of design parameters such as building loads, heat pump capacity, circulating pump, borehole diameter, and ground effective thermal properties, etc. The cooling and heating performance prediction of the system was conducted with different prediction methods and then each result is compared.

소규모 주택에 대한 수평형 지열 히트펌프 형태 결정에 관한 연구 (A Study on the description of Horizontal Geothermal Heat pump Type on Small Residential House)

  • 윤장렬;조성우;최정민
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2011년도 추계학술발표대회 논문집
    • /
    • pp.328-332
    • /
    • 2011
  • The conclusion is derived from the arranged results and using a simulation by determining the shape of an optimum heat pump which is appropriate for small scale houses. It is concluded as 3 meters long for the laying depth of underground piping of the horizontal type geothermal heat pump system in regard to the 5 RT capacity standard that is suitable for a small scale house. The shape of the horizontal type geothermal heat pump system for a small scale house is theThree pipe shape whose trench length is short and pipe length laid in a trench is short. It is 9 for the number of laying pipes that is most appropriate to system.

  • PDF

열펌프 건조 해석 모델을 이용한 측정 결과의 분석 (Investigation of Experimental Results Using the Drying Model for a Heat Pump Dryer)

  • 이공훈;김욱중;김종률;이상열
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2268-2273
    • /
    • 2008
  • The drying model has been used to obtain the fundamental information required to design the heat pump dryer with the simple thermodynamic model. In the model, the input conditions are crucial to obtain the acceptable results. The model includes one-stage heat pump cycle, simple drying process using the drying efficiency. The drying efficiency is defined with the conditions of inlet and outlet in the dryer. The experiment has been carried out in the pilot dryer with one-stage heat pump cycle. Refrigerant 134a is used in the heat pump cycle. In the dryer, some of drying air flows through the heat pump system and the rest of air bypasses the heat pump system and circulates through the drying chamber. Some operating conditions from the pilot dryer are used as input conditions of the model and the results are compared with experimental results for the validation.

  • PDF

$NH_3/H_2O$를 이용한 압축-흡수식 고온제조 하이브리드 히트펌프 시스템 개발 (Development of a Compression/Absorption Hybrid Heat Pump System Using $NH_3/H_2O$ Mixture for High Temperature Generation)

  • 김민성;백영진;신광호;박성룡;장기창;이영수;라호상
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.1249-1254
    • /
    • 2008
  • Industrial low temperature waste heat exists sparse in surroundings but its amount is huge. However, large portion of waste heat is discarded due to its poor recovery quality and inferior application technologies. The heat pump system in this research is based on the hybrid combination of compression cycle and absorption cycle in order to recycle various kind of industrial waste heat effectively. The prime objective is to design a compression absorption hybrid heat pump system which can produce high temperature above the level of $90^{\circ}C$ and low temperature of $20^{\circ}C$ at the same time using waste heat water of $50^{\circ}C$. A mathematical simulation was carried out as a basis to design a prototype 3 RT class hybrid heat pump. From the simulation results, fundamental parameters to design the system were obtained.

  • PDF

적분형 최적 레귤레이터 적용 시스템 히트펌프 제어 시뮬레이션 연구 (Numerical Simulation of a System Heat Pump Adopting an Integral Optimum Regulating Controller)

  • 김용찬;최종민
    • 설비공학논문집
    • /
    • 제25권7호
    • /
    • pp.398-405
    • /
    • 2013
  • Small and medium-size buildings employ a multi-distributed individual air-conditioning system that utilizes package air conditioners instead of centralized cooling systems, which can allow easier building management and maintenance, along with a diversification of facility use. Inverter driven system heat pumps have been developed to achieve not only an easy distribution control, allowing free combination of indoor units with different models and different capacities, but also wide applications to intelligent air conditioning. However, the control algorithms of the system heat pump are limited in the open literature, due to complicated operating conditions. In this paper, an inverter-driven system heat pump having two indoor units with electronic expansion valves (EEV) was simulated in the cooling mode. An integral optimum regulating controller employing the state space control method was also simulated, and applied to the system-heat pump system, to obtain efficient control of the MIMO (multi input multi output) system. The simulation model for the controller yielded satisfactory prediction results. The new control model can be successfully utilized as a basic tool in controller design.

2원 사이클 히트펌프의 모니터링 App 개발 (Development of Monitoring App for a Two-Way Cycle Heat Pump)

  • 김재원;아마르나스 앙가니;신규재
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2018년도 추계학술발표대회
    • /
    • pp.339-342
    • /
    • 2018
  • The resent work is about the design and installation of the 60 URT heat pump according to the need. This design is eco-friendly, easily available, reduces maintenance and electricity cost. The dimensions of heat pump is $1500mm{\times}500mm{\times}1940mm$ (i.e length 1500 mm, width 500 mm and height 1940 mm) is installed on site. It can be operated with automation (PID) and controlled by sensors. The performance of and heat pump is evaluated experimentally by the monitoring system.