• Title/Summary/Keyword: Heat pump circuit

Search Result 33, Processing Time 0.02 seconds

Design of ALIP with Flowrate of 40 I/min for the Removal of Residual Heat (잔열 제거용 40 I/min급 환단면 선형유도전자펌프의 설계)

  • Kim, H.R.;Nam, H.Y.;Kim, Y.G.;Choi, B.H.;Kim, J.M.;Hwang, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.13-15
    • /
    • 1998
  • EM(Electro Magnetic) pump is used for the purpose of transporting liquid sodium coolant with electrical conductivity in the LMR(Liquid Metal Reactor). In the present study. pilot EM pump has been designed by using of equivalent circuit method which is commonly employed to analyze linear induction machines for the test of removal of residual heat. The length and diameter of the pump have fixed values of 840 mm and 101.6 mm each by taking account of geometrical size of circulation loop for the installation of EM pump. Flowrate versus developing pressure is related from Laithwaite's standard design formula and the characteristic analyses of developing force and efficiency are carried out according to change of input frequency. From the characteristic curve, input frequency of 13 Hz is determined as the design frequency. On the other hand, The annular air gap size of 6.05 mm is selected not to bring about too much hydraulic loss. Resultantly design analysis makes pump have the electrical input of 604 VA and the hydrodynamical capacity of 1.3 bars and 40 l/min.

  • PDF

An Experimental Study on the Performance of Outdoor Heat Exchanger for Heat Pump Using $CO_{2}$ ($CO_{2}$이용 열펌프의 실외열교환기 성능에 관한 실험적 연구)

  • Chang Young Soo;Lee Min Kyu;Ahn Young San;Kim Young Il
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.2
    • /
    • pp.101-109
    • /
    • 2005
  • The purpose of this study is to investigate the performance of outdoor heat exchanger for heat pump using carbon dioxide. Two types of fin and tube heat exchangers (2 rows for type A and 3 rows for B) are tested. Both heat exchangers have counter-cross flow and 1-circuit arrangement. Test results such as heat transfer rate, pressure drop characteristics and temperature distribution in the heat exchanger are shown with respect to mass flow rate of refrigerant and frontal air velocity For cooling mode, the minimum temperature difference between air and refrigerant of type B is smaller than that of type A by $1^{circ}C$, but the pressure loss of air side is much higher for type B by $29\%$. It is found that a large temperature gradient of carbon dioxide during gas cooling Process Promotes thermal conduction through tube wall and fins which results in degradation of heat transfer performance. For heating mode operation, type B heat exchanger shows higher heat transfer performance compared to type A. However, because pressure loss of refrigerant side of type B is much greater than that of type A, the refrigerant outlet pressure of type B becomes lower than that of type A.

Low-grade waste heat recovery and repurposing to reduce the load on cooling towers

  • McLean, Shannon H.;Chenier, Jeff;Muinonen, Sari;Laamanen, Corey A.;Scott, John A.
    • Advances in Energy Research
    • /
    • v.7 no.2
    • /
    • pp.147-166
    • /
    • 2020
  • Industrial cooling towers are often ageing infrastructure that is expensive to maintain and operate. A novel approach is introduced in which a heat pump circuit is incorporated to reduce the load upon the towers by extracting low-grade energy from the stream sent to the towers and repurposing in on-site processing operations. To demonstrate the concept, a model was constructed, which uses industrial data on cooling towers linked to a smelter's sulphuric acid plant, to allow direct economic and environmental impact comparison between different heat recovery and repurposing scenarios. The model's results showed that implementing a heat pump system would significantly decrease annual operating costs and achieve a payback period of 3 years. In addition, overall CO2 emissions could be reduced by 42% (430,000 kg/year) and a 5% heat load reduction on the cooling towers achieved. The concept is significant as the outcomes introduce a new way for energy intensive industrial sectors, such as mineral processing, to reduce energy consumption and improve long-term sustainable performance.

Development of a New Refrigerant Mixture (RM-1) to improve the performance of Heat Pump System for Heating and Cooling of the Living Space (생활공간 냉난방용 열펌프의 성능개선을 위한 새로운 혼합냉매(RM-1) 개발)

  • Song, Heon;Ro, Jeong-Geun
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.5
    • /
    • pp.67-76
    • /
    • 2011
  • 생활공간 냉난방용 열펌프의 성능향상을 위해 R22의 대체 냉매로서 새로운 혼합냉매R22/R23/R152a(RM-1)을 개발하고 U. S. A.의 NIST사의 REFPRO Pprogram을 이용해 이 혼합냉매의 P-h diagram을 구성하여 실용화에 이용할 수 있도록 하였다. 본 연구는 실험을 통해 R22와 RM-1의 열펌프 성능효과를 분석하였다. 입 출구 물의 온도와 제2의 전열매체로서 물의 질량유량, 압축기의 소요 에너지 그리고 열펌프의 기타 열적 특성을 다양한 조건하에서 측정하였다. 이 실험 데이터를 통해 공기-물 열펌프 시스템에서의 RM-1과 R22의 성능계수(COP)를 비교하였다. 이를 통해, 혼합냉매 RM-1을 사용하는 열펌프 시스템은 외기온 $-17^{\circ}C$에서도 2.2의 성능계수로 작동하는 결과를 본 연구에서 보여주었다.

Development of a Conversion Unit converting the existing air conditioner to Heat Pump System for the Emergency Shelter (재해임시주거 냉난방을 위하여 기존 에어컨을 열펌프로 전환하는 변환기 개발)

  • Song, Heon
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.5
    • /
    • pp.77-84
    • /
    • 2011
  • Korea and some other countries located in the northern hemisphere employ the air conditioner for the space cooling in the hot summer season and also some kinds of heaters for the space heating in the cold winter season. Especially in Korea, a great number of air conditioners of about 12,700,000 sets have been used these days. However, they are used for a short operation period of only 58 days a year, which results in the material and economic losses. To solve this problem and employ this system for the emergency shelter, a new conversion unit which could convert the existing air conditioner to a heat pump system for simultaneous heating and cooling was developed in this study, and the thermal performance was tested. The results indicated that the indoor air could be heated from $27^{\circ}C$ to $39^{\circ}C$ by the air conditioner converted to a heat pump system with the ambient temperature variation of $-10^{\circ}C{\sim}10^{\circ}C$, and cooled from $20^{\circ}C$ to $15^{\circ}C$ by the converted system with the ambient temperature variation of $20^{\circ}C{\sim}35^{\circ}C$. And also the heating COP increased from 3.3 to 5.3 in case of the heat exchange of the super cooling(HESC) circuit and from 3.0 to 4.0 in case of the By-pass with the ambient temperature variation of $-10^{\circ}C{\sim}10^{\circ}C$, respectively, whereas the cooling COP decreased from 3.1 to 2.1with the increase of the ambient temperature from $20^{\circ}C$ to $35^{\circ}C$.

A Study on the Development of the Automatic Performance­Test­machine for Power Steering Pump (파워스티어링 펌프의 자동 성능 시험기 개발에 관한 연구)

  • 정재연;정석훈
    • Tribology and Lubricants
    • /
    • v.19 no.6
    • /
    • pp.335-341
    • /
    • 2003
  • Recently, the automotive industry is being developed rapidly. On this, a demand of high quality performance­test­machine is increased too. But it is progressive technology that must be combined hydraulic, mechanic and electronic technologies. To construct this system, the design of oil hydraulic circuit, interface skill between sensor and personal computer, data acquisition & display system and integrated control are very important skill. Moreover, reliable data is obtained with vacuum system and complex heat exchange system. Therefore, in this study, we designed a performance­test­machine by using above key technologies and we also made a integrated PC control system using personal computer which is more progressive and flexible method than PLC control.

Heat Transfer Performance Variation of Condenser due to Non-uniform Air Flow (불균일한 풍속분포에 따른 응축기의 열전달 성능 변화)

  • Lee, Won-Jong;Jeong, Ji Hwan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.4
    • /
    • pp.193-198
    • /
    • 2014
  • Heat transfer performance variation of a condenser caused by non-uniform distribution of air flow was investigated using a numerical simulation method. A heat exchanger used for a outdoor unit of a commercial heat pump system and represented by a numerical model was selected. Non-uniform profile of air-velocity was constructed by measuring the air velocity at various locations of the outdoor unit. Simulation was conducted for various refrigerant circuits and air flow conditions. Simulation results show that the heat transfer capacity was reduced depending on the air-flow rate and the refrigerant circuit configuration. It is also shown that the capacity reduction rate is increased as the average air velocity decreases.

Characteristic Analysis of a Small ALIP for the Developing of the Liquid Sodium (액체 소듐 순환 구동용 소형 환단면 선형유도전자펌프의 특성 분석)

  • Kim, Hee-Reyoung;Kim, Jong-Man;Nam, Ho-Yun;Hwang, Jong-Sun;Seo, Jang-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1999.11a
    • /
    • pp.1-3
    • /
    • 1999
  • EM (ElectroMagnetic) pump is used for the purpose of transporting liquid sodium coolant with electrical conductivity in the LMR(Liquid Metal Reactor). (In the present study, pilot EM pump has been designed by using of equivalent circuit method which is commonly employed to analyze linear induction machines for the test of removal of residual heat. The length and diameter of the pump have fixed values of 840 mm and 101.6 mm each by taking account of geometrical size of circulation loop for the installation of EM pump. Flowrate versus developing pressure is related from Laithwaite's standard design formula and the characteristic analyses of developing force and efficiency are carried out according to change of input frequency. From the characteristic curve, input frequency of 13 Hz is determined as the design frequency. On the other hand, The annular air gap size of 6.05 mm is selected not to bring about too much hydraulic loss. Resultantly design analysis makes pump have the electrical input of 604 VA and the hydrodynamical capacity of 1.3 bars and 40 l/min.

  • PDF

Reexamination and Derivation of Empirical Dynamic Model for a Hydraulic Bleed-Off Circuit (유압 블리드-오프 회로의 특성 재검토 및 실험적 동특성 모델링)

  • Jeong, Heon-Sul;Lee, Gwang-Heon;Kim, Hyeong-Ui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1552-1564
    • /
    • 2002
  • Meter-in, meter-out and bleed-off circuits are widely utilized in order to adjust the speed of a hydraulic actuator by using a flow control valve and in order to regulate the pressure of a hydraulic volume by using a simple on-off valve. In these circuits, a relief valve serves either to maintain constant system pressure or to protect the system from over-pressure loading. The relief valve of a bleed-off circuit is the second case frequently undergoing on-off action during operation. It makes the analysis of the pressure control characteristics of the circuit highly difficult. In this paper, steady-state flow rate, pressure, heat loss and efficiency of the three circuits are reexamined and basic experiments far obtaining the characteristics of a pump and relief valve are conducted. Finally, simple empirical first-order dynamic models of decreasing and increasing pressure were separately proposed and verified by comparison with experiment. As the result, the basis for the theoretical analysis of the pressure control characteristics of a bleed-off circuit using a simple on-off valve is established.

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2012 (설비공학 분야의 최근 연구 동향 : 2012년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwataik;Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Choi, Jong Min;Park, Jun-Seok;Kim, Sumin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.6
    • /
    • pp.346-361
    • /
    • 2013
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2012. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. The conclusions are as follows : (1) The research works on thermal and fluid engineering have been reviewed as groups of fluid machinery, pipes and valves, fuel cells and power plants, ground-coupled heat pumps, and general heat and mass transfer systems. Research issues are mainly focused on new and renewable energy systems, such as fuel cells, ocean thermal energy conversion power plants, and ground-coupled heat pump systems. (2) Research works on the heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer, and industrial heat exchangers. Researches on heat transfer characteristics included the results for natural convection in a square enclosure with two hot circular cylinders, non-uniform grooved tube considering tube expansion, single-tube annular baffle system, broadcasting LED light with ion wind generator, mechanical property and microstructure of SA213 P92 boiler pipe steel, and flat plate using multiple tripping wires. In the area of pool boiling and condensing heat transfer, researches on the design of a micro-channel heat exchanger for a heat pump, numerical simulation of a heat pump evaporator considering the pressure drop in the distributor and capillary tubes, critical heat flux on a thermoexcel-E enhanced surface, and the performance of a fin-and-tube condenser with non-uniform air distribution and different tube types were actively carried out. In the area of industrial heat exchangers, researches on a plate heat exchanger type dehumidifier, fin-tube heat exchanger, an electric circuit transient analogy model in a vertical closed loop ground heat exchanger, heat transfer characteristics of a double skin window for plant factory, a regenerative heat exchanger depending on its porous structure, and various types of plate heat exchangers were performed. (3) In the field of refrigeration, various studies were executed to improve refrigeration system performance, and to evaluate the applicability of alternative refrigerants and new components. Various topics were presented in the area of refrigeration cycle. Research issues mainly focused on the enhancement of the system performance. In the alternative refrigerant area, studies on CO2, R32/R152a mixture, and R1234yf were performed. Studies on the design and performance analysis of various compressors and evaporator were executed. (4) In building mechanical system research fields, twenty-nine studies were conducted to achieve effective design of mechanical systems, and also to maximize the energy efficiency of buildings. The topics of the studies included heating and cooling, HVAC system, ventilation, renewable energy systems, and lighting systems in buildings. New designs and performance tests using numerical methods and experiments provide useful information and key data, which can improve the energy efficiency of buildings. (5) In the fields of the architectural environment, studies for various purposes, such as indoor environment, building energy, and renewable energy were performed. In particular, building energy-related researches and renewable energy systems have been mainly studied, reflecting interests in global climate change, and efforts to reduce building energy consumption by government and architectural specialists. In addition, many researches have been conducted regarding indoor environments.