• Title/Summary/Keyword: Heat of Decomposition

Search Result 380, Processing Time 0.028 seconds

Simulation Analysis of Bio-Methane Decomposition Using Solar Thermal Energy (태양열 이용 바이오메탄 분해 해석연구)

  • Kim, Haneol;Lee, Sangnam;Lee, Sang Jik;Kim, Jongkyu
    • New & Renewable Energy
    • /
    • v.17 no.1
    • /
    • pp.40-49
    • /
    • 2021
  • In this study, the optical properties, heat transfer capabilities and chemical reaction performance of a methane thermal decomposition reactor using solar heat as a heat source were numerically analyzed on the basis of the cavity shape. The optical properties were analyzed using TracePro, a Monte Carlo ray tracing-based program, and the heat transfer analysis was performed using Fluent, a CFD program. An indirect heating tubular reactor was rotated at a constant speed to prevent damage by the heat source in the solar furnace. The inside of the reactor was filled with a porous catalyst for methane decomposition, and the outside was insulated to reduce heat loss. The performance of the reactor, based on cavity shape, was calculated when solar heat was concentrated on the reactor surface and methane was supplied into the reactor in an environment with a solar irradiance of 700 W/㎡, a wind speed of 1 m/s, and an outdoor temperature of 25℃. Thus, it was confirmed that the heat loss of the full-cavity model decreased to 13% and the methane conversion rate increased by 33.5% when compared to the semi-cavity model.

A Study on Reclamation of Waste Plastic: Plant Design (폐기프라스틱의 재활용에 관한 연구)

  • 김용욱;차시환
    • Journal of the Korean Society of Safety
    • /
    • v.3 no.1
    • /
    • pp.37-45
    • /
    • 1988
  • This research investigated the condition for plant design on reclamation of waste plastic by heat decomposition. The results were summarized as follows 1. The highest of oil product by heat decomposition is about 54.7%. 2. The optimum reaction temperature is about 300­40$0^{\circ}C$. 3. The optimum reaction time is 2­3 hours. 4. When the flow rate of 8­16 cm/sec in column reactor the yield is maximum. 5. Waste plastics yielded of carbon black product by heat decomposition at the optimum condition is about 23.5%. 6. Calorific values 0:1 were 9820 Kcal/kg.

  • PDF

A Study on the Activation Energy and Characteristics of the Heat Decomposition of Flour (밀가루의 열분해 특성과 활성화 에너지에 관한 연구)

  • Kwon, Sung-Yul;Choi, Jae-Wook;Lee, Dong-Hoon;Choi, Jae-Jin
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.6
    • /
    • pp.55-62
    • /
    • 2009
  • After examining the characteristics of the heat decomposition of the 80~120mesh flour using the Mini cup pressure vessel test and determining the apparent activation energy in a spontaneous combustion, the conclusion is as follows. The heat decomposition of flour occurs at around $100^{\circ}C$ and the peak for the maximum rise in pressure appears at around $290^{\circ}C$. The decomposition pressure against various temperature in the vessel shows the maximum value of $4.7kg/cm^2$ approximately at $440^{\circ}C$. When the thickness of the sample is 3cm, the maximum temperature and the critical temperature of ignition are $398^{\circ}C$ and $204.5^{\circ}C$, respectively; the critical temperature is $194.5^{\circ}C$ when the thickness of the sample is 5cm, and $182.5^{\circ}C$ when the sample is 7cm. In addition, the apparent velocity calculated using the method of least squares is 35.0407Kcal/mol.

An Experimental Study on the Optimal Conditions of Decomposition/Synthesis of Methanol for Heat Transport from Long Distance (장거리 열수송을 위한 메탄올 분해/합성 반응 최적화 조건의 실험적 연구)

  • Yoon, Seok-Mann;Moon, Seung-Hyun;Lee, Seung-Jae;Choi, Soon-Young
    • Journal of Energy Engineering
    • /
    • v.19 no.3
    • /
    • pp.195-202
    • /
    • 2010
  • A third of primary energy is lost as a waste heat. To improve this inefficient use of energy, systems using chemical reaction have been suggested and studied. In this study, methanol decomposition/synthesis reaction as a chemical reaction was selected for long time heat storage and long distance heat transport system because of safe, cheap and gaseous product. The purpose of this study is to find the optimal conditions in the methanol decomposition and synthesis reactions for long distance heat transport. Several parameters such as reaction temperature, pressure, $H_2$/CO ratio, space velocity, catalyst particle size were tested to find the effects on the reaction rates for the methanol synthesis. And the reaction temperature, space velocity, catalyst particle size were tested to find the effects on the production concentration for the methanol decomposition.

An experimental study on methanol decomposition catalysts for long distance-heat transportation (장거리 열수송을 위한 메탄올 분해 촉매에 대한 실험적 연구)

  • 문승현;박성룡;윤형기;윤기준
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.3
    • /
    • pp.334-342
    • /
    • 1998
  • In this experimental study, methanol was chosen as a system material for a long -distance heat transportation. Not only transition metals but also noble metals were investigated as an active component, and several metal oxides, such as ${\gamma}$-$Al_2$,$O_3$, $SiO_2$, etc. as a support. In general, transition metal catalysts absorbed more heat than noble metal catalysts. The amount of heat absorption and CO selectivity depends on temperature and methanol partial pressure, and 25$0^{\circ}C$ Ni/$SiO_2$ catalyst showed the best result for methanol decomposition reaction.

  • PDF

The Effect of Thermal Decomposition of Epoxy Resin for a Variation of Hardener (에폭시수지의 경화제 변화량에 따르는 열분해 영향)

  • Park, Keun-Ho;Lee, Yong-Sook;Song, Ju-Yeong;Lee, Soo;Kim, Sung-Il
    • Journal of the Korean Applied Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.393-398
    • /
    • 2007
  • We investigated heat stability of epoxy resin products and epoxy resin according to the influence hardener. The heat flow which shows the degree of thermal decomposition of the epoxy resin product and epoxy resin measured by using the differential scanning calorimeter (DSC). As a result, we found that in the case of heat stability for epoxy resin as hardener was added, the ratio of one to one (epoxy resin : hardener) was the most suitable in air condition and nitrogen atmosphere.

Formation and Thermal Decomposition of a Quasicrystalline Phase in Al-Fe-Mo Alloys (Al-Fe-Mo 합금에서 준결정상의 생성 및 열분해에 관한 연구)

  • Kim, Suk Hwan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.18 no.6
    • /
    • pp.362-368
    • /
    • 2005
  • Formation and thermal stability of a quasicrystalline phases in Al-Fe-Mo alloys were investigated by means of melt-spinning process and subsequent heat treatment test. Thermal decomposition and phase transformation process of the as-spun alloys were studied using X-ray diffraction and electron microscopy. The melt-spun Al-Fe-Mo alloys contained an icosahedral quasicrystalline phase with a quasilattice constant of 0.457 nm. Icosahedral phase formed at a composition of $Al_{82.5}Fe_{14}Mo_{3.5}$ as a metastable phase during rapid solidification was transformed into the stable crystalline phases, cubic 1/0 approximant and monoclinic ${\lambda}$-phase, upon heating. A metastable icosahedral and cubic(a = 0.93 nm) phases in as-spun $Al_{65}Fe_{20}Mo_{15}$ alloy were decomposed into two cubic(a = 0.62, 0.31 nm) phases by heat treatment.

The Characteristics of HI Decomposition using Pt/Al2O3 Catalyst Heat Treated in Air and Hydrogen Atmosphere (공기 및 수소 분위기에서 열처리 된 Pt/Al2O3 촉매의 HI분해반응 특성)

  • Park, Eun Jung;Ko, Yun Ki;Park, Chu Sik;Kim, Chang Hee;Kang, Kyoung Soo;Cho, Won Chul;Jeong, Seong Uk;Bae, Ki Kwang;Kim, Young Ho
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.3
    • /
    • pp.219-226
    • /
    • 2014
  • In HI decomposition, $Pt/Al_2O_3$ has been studied by several researchers. However, after HI decomposition, it could be seen that metal dispersion of $Pt/Al_2O_3$ was greatly decreased. This reason was expected of platinum loss and sintering, which platinum was aggregated. Also, this decrease of metal dispersion caused catalytic deactivation. This study was conducted to find the condition to minimize platinum sintering and loss. In particular, heat treatment atmosphere and temperature were examined to improve the activity of HI decomposition reaction. First of all, although $Pt/Al_2O_3$ treated in hydrogen atmosphere had low platinum dispersion between 13 and 18%, it was shown to suitable platinum form that played an important role in improving HI decomposition reaction. Oxygen in the air atmosphere made $Pt/Al_2O_3$ have high platinum dispersion even 61.52% at $500^{\circ}C$. Therefore, in order to get high platinum dispersion and suitable platinum form in HI decomposition reaction, air heat treatment at $500^{\circ}C$ was needed to add before hydrogen heat treatment. In case of 5A3H, it had 51.13% platinum dispersion and improved HI decomposition reaction activity. Also, after HI decomposition reaction it had considerable platinum dispersion of 23.89%.

Hydrogen Production with High Temperature Solar Heat Thermochemical Cycle Using Dual-zone Reactor and CeO2/ZrO2 Foam Device (Dual-zone reactor와 CeO2/ZrO2 Foam Device를 이용한 고온 태양열 열화학 싸이클의 수소 생산)

  • Cho, Ji-Hyun;Seo, Tae-Beom
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.5
    • /
    • pp.27-37
    • /
    • 2017
  • In this study, an artificial solar simulator composed of a 2.5 kW Xe-Arc lamp and mirror reflector was used to carry out the solar thermal two step thermochemical water decomposition cycle which can produce high efficiency continuous hydrogen production. Through various operating conditions, the change of hydrogen production due to the possibility of a dual-zone reactor and heat recovery were experimentally analyzed. Based on the reaction temperature of Thermal-Reduction step and Water-Decomposition step at $1,400^{\circ}C$ and $1,000^{\circ}C$ respectively, the hydrogen production decreased by 23.2% under the power off condition, and as a result of experiments using heat recovery technology, the hydrogen production increased by 33.8%. Therefore, when a thermochemical two-step water decomposition cycle is conducted using a dual-zone reactor with heat recovery, it is expected that the cycle can be operated twice over a certain period of time and the hydrogen production amount is increased by at least 53.5% compared to a single reactor.

The Thermal Changes of Precipitated Hydroxyapatite (습식 합성 Hydroxyapatite의 가열 분해성)

  • Kim, Chang-Eun;Park, Hoon;Kim, Bae-Yeon;Lee, Dong-Yoon
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.7
    • /
    • pp.907-915
    • /
    • 1990
  • The hydroxyapatite powder was prepared by the precipitation method. The obtained powder was heat-treated and its products were investigated in order to characterize its decomposition process. The powder was Ca-deficient hydroxyapatite with no relation to the Ca/P mole ratio in the initial solution. The obtained hydroxyapatite was thermally decomposed into tricalcium phosphate [Ca3(PO4)2, TCP] after heat-treatment above 80$0^{\circ}C$ and the extent of the decomposition was dependent on the nonstoichiometry of obtained hydroxyapatite, and the resultant hydroxyapatite and tricalcium phosphate maintained stable forms up to 120$0^{\circ}C$. The hydroxyapatite powder had the better stability with the samller the nonstoichinometry of hydroxyapatite. And the quantities of tricalcium phosphate obtained after decomposition were decreased, and also the corresponding decomposition temperatures were increased with decreasing extent of nonstoichiometry in precipitated hydroxyapatite.

  • PDF