• 제목/요약/키워드: Heat medium

검색결과 817건 처리시간 0.025초

정사각형 계의 전도-복사열전달에서 정반사면의 영향 (Effects of a Specularly Reflecting Wall in an Infinite Square Duct on Conductive-Radiative Heat Transfer)

  • 변기홍;한동천
    • 대한기계학회논문집B
    • /
    • 제25권10호
    • /
    • pp.1451-1458
    • /
    • 2001
  • The effects of a specularly reflecting surface on the wall heat flux and medium temperature distribution are studied. The system is an infinite square duct enclosing an absorbing and emitting medium. The walls are opaque, and black or gray. The walls emit diffusely but reflect diffusely or speculary. Heat is transferred by the combined effect of conduction and radiation. The radiative heat transfer is analyzed using direct discrete-ordinates method. The parameters under study are conduction, to radiation parameter, optical depth, wall emissivity, and reflection characteristics. The specular reflection and diffuse reflection show sizeable differences when the conduction to radiation parameter is less than around 0.01. The differences appear only either on the side wall heat flux or on the medium temperature profiles for the range of this study. The differences on the side wall heat flux are observed for optical thickness less than around 0.1 However the differences on the medium temperate profiles are found for optical thickness greater than around 1. The difference increase with increasing reflectance. The specular reflection increases the well heat flux gradient along the side wall.

다공성 매질과 비투과성 벽면 사이의 경계면에 대한 열적 경계 조건 (On the Thermal Boundary Conditions at the Interface Between the Porous Medium and the Impermeable Wall)

  • 김덕종;김성진
    • 대한기계학회논문집B
    • /
    • 제24권12호
    • /
    • pp.1635-1643
    • /
    • 2000
  • The present work investigates a heat transfer phenomenon at the interface between a porous medium and an impermeable wall. In an effort to appropriately describe the heat transfer phenomenon at the interface, the heat transfer at the interface between the microchannel heat sink, which is an ideally organized porous medium, and the finite-thickness substrate is examined. From the examination, it is clarified that the he heat flux distribution at the interface is not uniform for the impermeable wall with finite thickness. On the other hand, the first approach, based on the energy balance for the representative elementary volume in the porous medium, is physically reason able. When the first approach is applied to the thermal boundary condition, and additional boundary condition based on the local thermal equilibrium assumption at the interface is used. This additional boundary condition is applicable except for the very th in impermeable wall. Hence, for practical situations, the first approach in combination with the local thermal equilibrium assumption at the interface is suggested as an appropriate thermal boundary condition. In order to confirm our suggestion, convective flows both in a microchannel heat sink and in a sintered porous channel subject to a constant heat flux condition are analyzed. The analytically obtained thermal resistance of the microchannel heat sink and the numerically obtained overall Nusselt number for the sintered porous channel are shown to be in close agreement with available experimental results when our suggestion for the thermal boundary conditions is applied.

잠열 축열-바이오 세라믹 온돌의 난방 특성(II) - 이론적 분석을 중심으로 - (Floor Heating Characteristics of Latent Heat Storage-Bioceramic Ondol(II) - Focused on Theoretical Analysis -)

  • 송현갑;유영선
    • 태양에너지
    • /
    • 제15권2호
    • /
    • pp.13-24
    • /
    • 1995
  • 국내의 주택난방은 온수 순환 파이프를 매설한 시멘트 온돌이 대부분을 차지하고 있으며, 현재와 같은 형태의 파이프 매설식 온돌은 열매자체의 축열성이 없기 때문에 빈번한 난방열의 공급으로 인하여 경제성과 쾌적도의 측면에서 불리하고, 또한 매설식이기 때문에 고장시의 수리가 불편하다는 문제점을 안고 있다. 따라서 축열형 조립식 형태의 온돌에 관한 연구가 최근에 이루어 지고 있으나, 실용화를 저해서는 보다 더 조직적이며 체계적인 연구가 이루어져야 할 것으로 판단된다. 현재 이용되고 있는 매설식 온수 순환 온돌의 단점을 개선하기 위하여 본 연구에서는 잠열축열재와 바이오세라믹을 이용한 조립식 온돌을 설계 제작하였으며, 온돌을 설치한 난방공간의 열전달 특성을 열평형 이론을 적용하여 해석하였다.

  • PDF

발포 금속 내 공기 유동 및 압력강하에 관한 시뮬레이션 (The Simulation about the Air Flow and Pressure Drop inside the Metal Foam)

  • 김필환;김미화;장석준;정한식;정효민
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.1053-1058
    • /
    • 2008
  • Porous medium was considered in the present study for the heat transfer enhancement. This was attributed to its high surface area to volume ratio as well as intensive flow mixing by tortuous flow passages. But when the air or water flow through in the porous medium, it is occurred the pressure drop between inlet and outlet. So in the present study investigated simulation result about the pressure drop in the porous medium before apply to heat exchanger. In this simulation, the thickness of the solid inside the porous medium region was varied 0.2 mm to 0.4 mm. And then the simulation result were compared the pressure drop in the same unit cell ($0.5\;mm{\times}0.5\;mm{\times}0.5\;mm$). To make the analysis model, it was assumed the 14-sided tetrakaidecahedron cell which has long been considered the optimal packing cell first proposed by the Lord Kelvin in 1887. And then the simulation is carried out using by STAR-CCM+ which is commercial software. The simulation result can be showed quantified pressure drop by solid effect in the porous medium.

  • PDF

A frame work for heat generation/absorption and modified homogeneous-heterogeneous reaction in flow based on non-Darcy-Forchheimer medium

  • Hayat, Tasawar;Ahmad, Salman;Khan, Muhammad I.;Khan, Muhammad I.;Alsaedi, Ahmed
    • Nuclear Engineering and Technology
    • /
    • 제50권3호
    • /
    • pp.389-395
    • /
    • 2018
  • The present work aims to report the consequences of Darcy-Forchheimer medium in flow of Cross fluid model toward a stretched surface. Flow in porous space is categorized by Darcy-Forchheimer medium. Further heat transfer characteristics are examined via thermal radiation and heat generation/absorption. Transformation procedure is used. The arising system of nonlinear ordinary differential equations is solved numerically by means of shooting method. The effects of different flow variables on velocity, temperature, concentration, skin friction, and heat transfer rate are discussed. The obtained outcomes show that velocity was enhanced with the increase in the Weissenberg number but decays with increase in the porosity parameter and Hartman number. Temperature field is boosted by thermal radiation and heat generation; however, it decays with the increase in the Prandtl number.

중형폐기물 소각시설의 수은, 납, 비소, 셀렌 배출특성 (Characteristics of Hg, Pb, As, Se Emitted from Medium Size Waste Incinerators)

  • 이한국
    • 한국환경보건학회지
    • /
    • 제32권1호
    • /
    • pp.8-18
    • /
    • 2006
  • The aim of this study is to evaluate the emission characteristics of mercury, lead, arsenic, and selenium from medium size municipal solid waste incinerators(MSWIs) in Korea. The concentrations of mercury, lead, arsenic, and selenium emitted from medium size MSWI stack were $2.67\;{\mu}g/Sm^3,\;0.38\;mg/Sm^3,\;1.33\;{\mu}g/Sm^3,\;0.28\;{\mu}g/Sm^3$, respectively. The concentration levels of mercury, lead, arsenic in flue gas from medium size MSW incinerator stacks selected were nearly detected under the Korea criteria level. Removal efficiencies of mercury, lead, arsenic, and selenium in waste heat boiler(WHE) and cooling tower(CT) were $90.36\%,\;69.76\%,\;43.04\%,\;40.64\%$, respectively. In general, the removal efficiencies of mercury and lead in WHE were higher than those of arsenic and selenium in WHE. Emission gas temperature reduction from waste heat boiler(WHB) and cooling tower(CT) can control mercury and lead of medium size MSWIs. To evaluate the relationship between mercury, lead, arsenic, selenium of fly ash and those of flue gas, it was carried out to correlation analysis of each metal concentration in the fly ash and in the flue gas from medium size MSWIs. From the correlation analysis, the coefficients of mercury, lead, arsenic, and selenium were 0.61, -0.38, 0.87, 0.28, respectively. The results of correlation analysis revealed that it should be highly positive to the correlation coefficients of mercury and arsenic in the fly ash and those of the flue gas emitted from medium size MSWIs. As it were, the concentrations of mercury and arsenic of flue gas from medium size MSWIs are high unless mercury and arsenic in fly ash are properly controlled in dust collection step in medium size MSWIs. It was also concluded that mercury, lead, arsenic, and selenium from MSWIs stacks could be controlled by waste heat boiler(WHE) and dust collecting step in medium size MSWIs.

핀-휜을 삽입한 채널의 길이에 따른 열전달 특성 변화 (Heat Transfer Characteristics depending on the Length of a Channel with Pin-Fin Array)

  • 손영석;신지영;이상록
    • 설비공학논문집
    • /
    • 제19권5호
    • /
    • pp.418-425
    • /
    • 2007
  • The power consumption and heat generation in a chip increase as the components are miniaturized and the computing speed becomes faster. Therefore, suitable heat dissipation has become one of the primary limiting factors to ensure the guaranteed performance and reliable operation of the electronic devices. A pin-fin array which may be considered as a porous medium could be used as an alterative cooling system of the electronic equipment. The aim of the present study is to investigate the forced-convective heat transfer characteristics of pin-fin heat exchangers. Convective heat transfer through the pin~fin array is analyzed experimentally based on porous medium approach. The influence of the structure of the pin-fin array including the pin-fin spacing, the pin diameter and plate length on heat transfer characteristic is investigated and compared with the Previous analytical results and existing correlation equations. Nowadays, electronic and mechanical devices become smaller and smaller. In this sense, the main purpose of this study is to decide the optimum pin-fin arrangement to get similar heat transfer performance when the length of the existing cooling system is reduced as a half.

SOLUTION OF THE SUPER BESSEL WAVE EQUATION WITH INTEGRAL PARAMETER m

  • Lee, Nae-Ja;Liu, Chang-Keng
    • 대한수학회보
    • /
    • 제20권2호
    • /
    • pp.99-103
    • /
    • 1983
  • Internal heat generation is one of the insidious conditions affecting the quality of an industrial product after it is cast, coated, molded, forged or laminated. Frequently, the product is pressed into service before the exothermic chemical reactions in the generic material has been completed. The heat liberated from this continuing chemical reaction or the residual deformation from the rheological activities in the materials must be adequately removed or prevented, or the product may be discolored, warped, weakened or even "ignited" spontaneously. Numerous instances of premature structural failures, product-recalls, and/or system-malfunctions have been recorded in recent history. The Coulee Dam was poured with pre-chilled concrete just to negate this freakish encore. It is well-known that concrete (a non-isotropic conducting medium), for instance, takes 28 days to develop its full strength. During this period of curing it is conceivable that the processes of internal heat generation, heat conduction and heat dissipation take place simultaneously inside the medium.he medium.

  • PDF

흡수식 냉동기 고온재생기 내의 가스복사체 열전달 특성에 관한 연구 (A study on the heat transfer characteristics of gas-radiative medium into a high temperature generator of an absorption refrigerator)

  • 정대인;김용모;배석태
    • 태양에너지
    • /
    • 제18권1호
    • /
    • pp.81-89
    • /
    • 1998
  • In this paper an experimental was done to design combustion chambers which is required radiation strength of high temperature generator of absorption rigerator. Partiqularly, in combustion chamber radiative mediums were set and basic experiments were done according to its size by radiation strength and effects of heat transfer promotion. The results are as follows : 1) When radiative mediums were set in small combustion furnace burning nonframely radiative heat transfer was effected. 2) In case that area ratio($A/A_o$) of radiative medium is 0.82 or over, temperature fluctuation effects of furnace inside were not nearly. 3) In experimental boundary heat transfer effects were 1.8 times by setting up radiative medium. Specially, $q/{\Delta}T$ values of furnace inside were uniformed nearly by setting up radiative mediums.

  • PDF

두 무한 평면 사이의 선형 이방성 산란 매질에서의 열전달 (Heat Transfer with Linearly Anisotropic Scattering Medium in a Plane Layer)

  • 변기홍
    • 대한설비공학회지:설비저널
    • /
    • 제17권4호
    • /
    • pp.435-441
    • /
    • 1988
  • The purpose of this study is to apply the zone method expressions for a gray, absorbing, emitting, and linearly anisotropic scattering medium enclosed in an infinite plane layer to evaluate heat transfer applications. The medium is assumed to be homogeneous and has a refractive index of unity. The boundary surfaces are opaque and gray, diffusely emitting and reflecting at a constant temperature. Radiative equilibrium condition, combined conductive and radiative heat transfer, and thermal ignition are studied in terms of the governing parameters, and the results are compared with previous studies. Wall heat flux results agree well with those of others. Except for the minor discrepancies observed for some cases, temperature results also agree well with those of previous studies. Good agreement with results from other methods indicates the accuracy of the zone method as well as its compatibility with other modes of heat transfer.

  • PDF