• Title/Summary/Keyword: Heat intensity

Search Result 778, Processing Time 0.024 seconds

Natural Convection Flow and Heat Transfer in a Fluid Heated Internally within an Inclined Rectangular Enclosure (경사진 직사각형 공간내에서 내부적으로 가열되는 유체의 자연대류유동 및 열전달)

  • 이재헌;김재근;박만흥
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.3
    • /
    • pp.555-568
    • /
    • 1992
  • A asic study is performed on two-dimensional natural convective flow and heat transfer in a fluid heated internally within an inclined rectangular enclosures. For Rayleign numbers from 1.0*10$^{4}$to 1.5*10$^{5}$ , aspect ratio of 1/4, 1/3 and 1/2, and inclined angle from 0deg to 90deg, the governing equations were solved numerically and the experiments were performed by MachZehnder interferometer using low salinity water as a test fluid. For aspect ratios adapted in present study, the natural convection occures the most intensive at inclined angle of 0deg. This became weak at inclined angles of 60deg and 30deg in case of aspect ratios of 1/3 and 1/2 respectively. The intensity of flow was roughly in proportion to Rayliegh numbers and in proportion to the forth power of aspect ratios.

Comparison of Physicochemical Properties of Hard and Floury Type Rice Flour by Dry Heat Treatment (건열처리에 따른 경질미와 분질미 쌀가루의 이화학적 특성 비교)

  • Jung, Hee Nam
    • Journal of the Korean Society of Food Culture
    • /
    • v.36 no.5
    • /
    • pp.484-491
    • /
    • 2021
  • This study investigated the effect of dry heat treatment (DHT) on the physicochemical properties of hard type (HR) and floury type (FR) rice to improve the processing aptitude of rice flour. The rice flour was heated at 130℃ for 0, 2 and 4 hours, and the color value, water absorption index (WAI), water soluble index (WSI), swelling power, solubility, pasting properties, particle shape and the X-ray diffraction were measured. After DHT, the L value of rice flour decreased, and the b value increased. The WAI, WSI, swelling power and solubility of HR and FR increased with the increase of treatment time. The cold viscosity and setback increased, while breakdown decreased. Cracks and lumps formed with fine particles were observed. The X-ray diffraction pattern was A-type, while the diffraction intensity decreased. According to the results of the two-way analysis of variance (ANOVA) test, the hydration and pasting properties were significantly different between HR and FR and were affected by DHT time. The results suggest that the properties of modified rice flour by DHT can be used in the food industry.

A study on the algorithm for extending the usage time of a stand-alone street light LED using the BFS algorithm (BFS 알고리즘을 적용한 독립형 가로등 LED 사용시간 연장 알고리즘 연구)

  • Kim, Jaejin
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.17 no.1
    • /
    • pp.1-6
    • /
    • 2021
  • In this paper, to expand the use of standalone street lights, an algorithm for controlling LED energy consumption was proposed. The proposed method uses an LED module of a standalone street light divided into n zones. This is a method of reducing total power consumption by preventing the increase in power consumption due to high heat generation by weakly operating the entire LED according to the illuminance. When the amount of sunlight decreases, the whole LED operates weakly and then brightens, and unlike streetlight that act as streetlight, a method of dividing LEDs by area and limiting the number of LEDs operating according to illumination intensity was proposed. This is a way to use a lot of time with limited battery capacity by reducing the generation of heat that consumes the most power in streetlight. It is also a method of continuously changing the initial usage area to improve the total usage time of the LED substrate. As a result of the experiment, it was found that the proposed method extends the service time because it generates less heat than the conventional stand-alone streetlight.

Study of Natural Convection of Magnetic Fluid in Cubic Cavity (정방형관 내에서 자성유체의 자연대류현상에 대한 수치적 연구)

  • Seo, Jae-Hyeong;Lee, Moo-Yeon;Seo, Lee-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.7
    • /
    • pp.637-646
    • /
    • 2013
  • This study aims to numerically investigate the natural convection characteristics of a magnetic fluid in a cubic cavity. The governing equations of the magnetic fluid are solved using the Generalized-Simplified Marker and Cell Method (GSMAC). The natural convection and heat transfer characteristics of the magnetic fluid were analyzed by varying the intensity and direction of the magnetic field. As a result, it was found that the natural convection characteristics were controlled by the intensity and direction of the magnetic field, and the mean Nusselt numbers were minimized at a vertical intensity of H=-4000 and horizontal intensity of H=12000 of the magnetic field. In addition, the mean Nusselt numbers increased with the intensities of the magnetic field, regardless of the direction of the magnetic field.

A Study on the Effects of Hydrogen Addition and Swirl Intensity in CH4-Air Premixed Swriling Flames (메탄-공기 예혼합 선회화염에서 수소첨가와 선회강도 영향에 관한 연구)

  • KIM, HAN SEOK;CHO, JU HYEONG;KIM, MIN KUK;HWANG, JEONGJAE;LEE, WON JUNE
    • Journal of Hydrogen and New Energy
    • /
    • v.30 no.6
    • /
    • pp.593-600
    • /
    • 2019
  • The combustion characteristics of methane/hydrogen pre-mixed flame have been investigated with swirl stabilized flame in a laboratory-scale pre-mixed combustor with constant heat load of 5.81 kW. Hydrogen/methane fuel and air were mixed in a pre-mixer and introduced to the combustor through a burner nozzle with different degrees of swirl angle. The effects of hydrogen addition and swirl intensity on the combustion characteristics of pre-mixed methane flames were examined using particle image velocimetry (PIV), micro-thermocouples, various optical interference filters and gas analyzers to provide information about flow velocity, temperature distributions, and species concentrations of the reaction field. The results show that higher swirl intensity creates more recirculation flow, which reduces the temperature of the reaction zone and, consequently, reduces the thermal NO production. The distributions of flame radicals (OH, CH, C2) are dependent more on the swirl intensity than the percentage of hydrogen added to methane fuel. The NO concentration at the upper part of the reaction zone is increased with an increase in hydrogen content in the fuel mixture because higher combustibility of hydrogen assists to promote faster chemical reaction, enabling more expansion of the gases at the upper part of the reaction zone, which reduces the recirculation flow. The CO concentration in the reaction zone is reduced with an increase in hydrogen content because the amount of C content is relatively decreased.

Heat Stress Assessment and the Establishment of a Forecast System to Provide Thermophysiological Indices for Harbor Workers in Summer (하계 항만열환경정보 제공을 위한 열환경 평가 및 예보시스템 구축)

  • Hwang, Mi-Kyoung;Yun, Jinah;Kim, Hyunsu;Kim, Young-Jun;Lim, Yeon-Ju;Lee, Young-Mi;Kim, Youngnam;Yoon, Euikyung;Kim, Yoo-Keun
    • Journal of Environmental Health Sciences
    • /
    • v.42 no.2
    • /
    • pp.92-101
    • /
    • 2016
  • Objectives: Outdoor workers are exposed to thermally stressful work environments. In this study, heat stress indices for harbor workers in summer were calculated to evaluate thermal comfort based on a human heat balance model. These indices are Physiological Subjective Temperature (PST), Dehydration Risk (DhR), and Overheating Risk (OhR) according to respective stage of cargo work in a harbor. In addition, we constructed a forecast system to provide heat stress information. Methods: Thermophysiological indices in this study were calculated using the MENEX model (i.e. the human heat balance model), which used as inputs the meteorological parameters, clothing insulation, and metabolic rate for each stage of cargo work in the harbor of Masan over the course of seven days, including a four-day heat wave. The forecast heat stress information constructed for Masan harbor was based on meteorological data supported by the Dong-Nae Forecast from the KMA (Korea Metrological Administration) and other input parameters. Results: According to higher metabolic rate, thermophysiological indices showed a critical level. In particular, PST was evaluated as reaching the 'Very hot' or 'Hot' level during all seven days, despite the heat occurring over only four. It is important in a regard to consider the work environment conditions (i.e. labor intensity and clothing in harbor). On a webpage, the forecast thermophysiological indices show as infographics to be easily understand. This webpage is comprised of indices for both current conditions and the forecast, with brief guidance. Conclusion: Thermophysiological indices show the risk level to health during a heat wave period. Heat stress information could help to protect the health of harbor workers. Further, this study could extend the applicability of these indices to a variety of outdoor workers in consideration of work environments.

Thermal Characteristics of Living Leaves in Pinus Densiflora with Heat Flux (복사열 증가에 따른 소나무 생엽의 열적특성 분석)

  • Park, Young-Ju;Lee, Hae-Pyeong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.5
    • /
    • pp.75-82
    • /
    • 2010
  • To study the combustion characteristics of forest fuel by fire intensity, the experiment of combustion characteristics on Pinus Densiflora living leaves, which is the weakest species to the forest fire, was delivered, using variables of heat flux(25 kW/$m^2$, 50 kW/$m^2$, 75 kW/$m^2$). With the equipment of Cone calorimeter, the characteristics of ignition, heat, smoke release, CO and $CO_2$ release, and mass loss were analyzed. Pinus Densiflora living leaves containing moisture of 60.66% were not ignited at the heat flux of variables 25 kW/$m^2$, 50 kW/$m^2$, 75 kW/$m^2$. In proportion to the heat flux value, heat release amount and heat release rate reached maximum value rapidly: higher variables came to the maximum by the half rapidity and the maximum value were twice higher than the former lower variables respectively. As for the smoke release, the less heat flux the variable had, the more smoke release it had, due to incomplete combustion. The release amount of CO and $CO_2$ had more maximum value as the heat flux increased and more radiant heat meaned more carbon oxide. When the forest fire breaks out, therefore, a great amount of CO and $CO_2$ will be released by Pinus Densiflora.

Exploring Physical Environments, Demographic and Socioeconomic Characteristics of Urban Heat Island Effect Areas in Seoul, Korea (서울시 도시열섬현상 지역의 물리적 환경과 인구 및 사회경제적 특성 탐색)

  • Cho, Hyemin;Ha, Jaehyun;Lee, Sugie
    • Journal of the Korean Regional Science Association
    • /
    • v.35 no.4
    • /
    • pp.61-73
    • /
    • 2019
  • Urban development and densification have led to the Urban Heat Island Effect, in which the temperature of urban space is higher than the surrounding areas, and the intensity is increasing with climate change. In addition, when the city's air temperature rises in summer, low-income, elderly population, and socially vulnerable people who have health problems lack the ability to cope with the elevated heat environment. Therefore, this study aimed to identify the urban heat island area of Seoul through Hotspot analysis, which is a spatial statistics technique, and explored physical environments, demographic and socioeconomic characteristics of urban heat island effect areas using logistic regression models. This study performed urban heat island hotspot analysis using the average air temperatures of the 423 administrative dongs in Seoul. Analysis results identified that the urban heat islands were concentrated in Jung-gu, Jongno-gu, Yongsan-gu, and Yeongdeungpo-gu. Logistic regression analysis results indicated that urban heat island areas of Seoul were affected by residential floor area ratio, commercial facility floor area ratio, overall floor area ratio, impervious surface ratio, and normalized difference vegetation index(NDVI). In addition, as a result of analyzing the vulnerable area of thermal environment considering the demographic and socioeconomic characteristics of the heat island area, urban heat island areas of Seoul were significantly associated with the proportion of low-income elderly living alone. The result of this study provided useful insights for urban thermal environmental design and policy development that could improve the thermal environment for the socially disadvantaged urban population.

Effects of Outflow Area on Pool Boiling in Vertical Annulus (출구유로 단면적이 수직 환상공간 내부의 풀비등에 미치는 영향)

  • Kang, Myeong-Gie
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.4
    • /
    • pp.377-385
    • /
    • 2013
  • To identify the effects of an outflow area on pool boiling heat transfer in a vertical annulus, three different flow restrictors were studied experimentally. For the test, a heated tube of smooth stainless steel and water at atmospheric pressure were used. Both annuli with open and closed bottoms were considered. To validate the effects of the outflow area on the heat transfer, the results of the annulus with the restrictor were compared with the data for the plain annulus without the restrictor. The reduction of the outflow area ultimately results in a decrease in the heat transfer. As the outflow area is very small, a slight increase in heat transfer is also observed. The major cause of this tendency is explained as the difference in the intensity of liquid agitation cause by the movement of coalesced bubbles. It is identified that the convective flow, pulsating flow, and evaporative mechanism are considered as the important mechanisms.

Infrared Radiative Heat Transfer Characteristics of Fiber Mat Catalytic Burners (매트촉매 버너의 적외선 복사열전달 특성)

  • Song, Kwang Sup;Choi, Jung In
    • Korean Chemical Engineering Research
    • /
    • v.50 no.6
    • /
    • pp.1049-1055
    • /
    • 2012
  • The fiber mat catalytic burner that uses infrared radiative heat obtained by flameless catalytic combustion was manufactured and tested to investigate its combustion characteristics. About 9 to 17% of combustion heat was released by sensible heat during the premixed catalytic combustion depend on combustion condition. To find out radiation intensity with distance between catalytic burner and sample, the equation that calculate the receiving surface of radiative energy under the fiber mat catalytic burner was driven. This equation was well correlated with the drying rate of melamine. The drying experiments were carried out to the melamine, wood chip and agricultural pallet by using the fiber mat catalytic burner and the energy efficiency was calculated from drying rate of them. The energy efficiency of the fiber mat catalytic burner reaches to 79% in maximum for drying of the wood chip.