• Title/Summary/Keyword: Heat input distribution

Search Result 146, Processing Time 0.029 seconds

Estimating Korean Pine(Pinus koraiensis) Habitat Distribution Considering Climate Change Uncertainty - Using Species Distribution Models and RCP Scenarios - (불확실성을 고려한 미래 잣나무의 서식 적지 분포 예측 - 종 분포 모형과 RCP시나리오를 중심으로 -)

  • Ahn, Yoonjung;Lee, Dong-Kun;Kim, Ho Gul;Park, Chan;Kim, Jiyeon;Kim, Jae-uk
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.18 no.3
    • /
    • pp.51-64
    • /
    • 2015
  • Climate change will make significant impact on species distribution in forest. Pinus koraiensis which is commonly called as Korean Pine is normally distributed in frigid zones. Climate change which causes severe heat could affect distribution of Korean pine. Therefore, this study predicted the distribution of Korean Pine and the suitable habitat area with consideration on uncertainty by applying climate change scenarios on an ensemble model. First of all, a site index was considered when selecting present and absent points and a stratified method was used to select the points. Secondly, environmental and climate variables were chosen by literature review and then confirmed with experts. Those variables were used as input data of BIOMOD2. Thirdly, the present distribution model was made. The result was validated with ROC. Lastly, RCP scenarios were applied on the models to create the future distribution model. As a results, each individual model shows quite big differences in the results but generally most models and ensemble models estimated that the suitable habitat area would be decreased in midterm future(40s) as well as long term future(90s).

A Study on the Characteristics of the Residual Stress Distribution of Steel Structural Members (용접(鎔接) 강구조(鋼構造) 부재(部材)의 잔류응력(殘留應力) 특성(特性)에 관한 연구(研究))

  • Chang, Dong Il;Kim, Doo Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.1
    • /
    • pp.93-101
    • /
    • 1987
  • Residual stresses have remained around welding areas of a steel structure member after welding operation. The major causes to occur these residual stresses are the local heat due to a welding, the heat stresses due to a irregular and rapid cooling condition, the material and rigidity of a steel structure. Ultimatly, these residual stresses have been known to decrease a brittle fracture strength, a fatigue strength, a buckling strength, dynamic properties, and the corrosion resistance of the material. This paper deals with the residual stresses on a steel structure member through experimental studies. SWS 58 plates were welded by the method of X-groove type. These plates were layed on the heat treatment at four different temperatures; $350^{\circ}C$, $500^{\circ}C$, $650^{\circ}C$ and $800^{\circ}C$. The resulting residual Stresses were measured by hole drilling method, and the followings were obtained. The residual stresses on the vicinity of a welding point were relieved most effectively at the temperature of $650^{\circ}C$, and these stresses relieved completly when the ratio of a hole diamerter to a hole depth became unity. Hardness test shows that the higher value of hardness at the heat affected zone dropped to belower as the temperature went up from $350^{\circ}C$ to $800^{\circ}C$. The Welding input heats have not influenced the magnitude of residual stresses at the input heat range between above and below one forth than standard.

  • PDF

Deformation Technology for Thick Plate Using Single Pass Line Heating by High Frequency Induction Heating (고주파 유도 단일패스 선상가열 유기 후판 성형 기술)

  • Lee, K.S.;Eom, D.H.;Kim, C.W.;Pyun, S.Y.;Son, D.H.;Gong, G.Y.;Kim, B.M.;Lee, J.H.
    • Transactions of Materials Processing
    • /
    • v.20 no.6
    • /
    • pp.439-449
    • /
    • 2011
  • The temperature distribution and subsequent permanent deformation of SS400 carbon steel plate subjected to an induction-based line heating process were studied by a numerical method involving coupled 3-D electromagnetic-thermal-structural analysis. The numerical study revealed that the amount of permanent deformation is strongly related to the Joule loss caused by such process conditions as input power and moving speed of the heat source. To validate the numerical analysis results, line heating experiments were carried out with a high frequency(HF) induction heating(IH) equipment capable of bending thick plate with the moving accuracy of ${\pm}0.1mm$ in heating coil position. The amount of permanent deformation increased with decreasing moving speed and increasing input power.

Characteristics of Catalytic Combustible Gas Sensor Based on Planar Technology (평탄형 접촉 연소식 가스 센서의 특성)

  • Kim, Yeong-Bok;Noh, Hyo-Sub;Park, Jin-Seong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.9
    • /
    • pp.812-817
    • /
    • 2008
  • A catalytic combustible sensor for LPG/LNG detection was fabricated on $Al_2O_3$ substrate using planar technology. The catalysts of Pd and Pt were added to ${\alpha}$- and ${\gamma}-Al_2O_3$ powders. The mixture of Pt, Pd and $Al_2O_3$ were homogenized by using a three roll mixer. TCR characteristics of Pt heater were optimized with the heat treatment temperature. Sensing properties were investigated as a function of the microstructure of $Al_2O_3$, the gas concentration and the variation of input voltage. ${\alpha}-Al_2O_3$ sintered at 500 $^{\circ}C$ is more suitable as LPG/LNG sensor due to good grain shape and size distribution of about 300 nm than that of ${\gamma}-Al_2O_3$ which is in irregular shape and with a particle size of 5-30 ${\mu}m$. The sensor has shown maximum output voltage of 14 mV for 1000 ppm $C_4H_{10}$ and 3.8 mV for 1000 ppm $CH_4$ at 5.0 V input voltage.

Optcal and thermal diffusion properties of Ge-Sb-Te multi-layered thin films for optical recording media (광기록매체용 Ge-Sb-Te 다층 박막의 광학적 특성 및 열전달 특성)

  • 김도형;김상준;김상열;안성혁
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.5
    • /
    • pp.394-400
    • /
    • 2001
  • We studied thermal diffusion properties diffusion properties of multi-layered Ge-Sb-Te alloy thin films for optical recording media by solving the thermal equation. Based on the numerical analysis of optical energy distribution and absorption inside multi-layered films including temperature gradient and heat transfer simultaneously, we proposed the optimum parameters of the input laser power and the multi-layer structure as follow. i) Input laser power is 18 mW, ii) laser exposure time is 60 ns, iii) the thicknesses of the lower and the upper ZnS-SiO$_2$are 140 nm and 20~30 nm respectively, and iv) thickness of Ge-Sb-Te recording film is 20 nm.

  • PDF

Process Parameter Effect on Deformation of a V-groove Thin Plate for FCAW and EGW (V-groove 박판의 FCAW와 EGW 공정에 따른 변형에 미치는 공정인자 영향)

  • Han, Juho;Jeon, Jaeseung;Park, Chulsung;Oh, Chongin;Yun, Jinoh;Lee, Jeongsoo
    • Journal of Welding and Joining
    • /
    • v.31 no.1
    • /
    • pp.65-70
    • /
    • 2013
  • Finite element analysis and welding experiments were performed to evaluate deformation aspect for Flux Cored Arc Welding(FCAW) and Electro Gas Welding(EGW). Numerical researches of FCAW and EGW were performed considering the difference of number of welding pass and welding direction to arc flow. To perform the numerical study of FCAW and EGW, number of welding pass and welding direction to arc flow were considered in the finite element model. FCAW process requires multi pass and its welding direction is vertical to welding torch. On the other hand, EGW process requires single pass and its welding direction is parallel to welding torch. The difference of welding direction and heat input was considered in the finite element analysis. In FCAW process, Goldak's double ellipsoidal heat input model was adopted. In the EGW process, Hemi-spherical power density distribution was adopted. In the results of experiment and finite element analysis, angular deformation of FCAW process is larger than that of EGW process.

Characteristics of Friction Stir Lap Weldment according to Joining Parameter in 5052 Aluminium Alloy (5052 알루미늄 합금에서 접합변수에 따른 겹치기 마찰교반접합부의 특성)

  • Ko, Young-Bong;Park, Kyeung-Chae
    • Journal of the Korean institute of surface engineering
    • /
    • v.45 no.5
    • /
    • pp.181-187
    • /
    • 2012
  • The Friction Stir Welding (FSW) has mainly been used for making butt joints in Al alloys. The development of Friction Stir Lap Welding (FSLW) would expand the number of applications. In this study, microstructures and mechanical properties of FSLW in A5052 alloy were investigated under varying rotating speed and probe length. Investigating the characteristics as FSLWed conditions were as below ; Failure Maximum load by shear fracture was increased proportional to the width of joint area, which was increased by input heat, stirring intensity in the case of 2.3 mm probe length. Tensile fracture occurred, and maximum load was determined due to side worm hole of joint area and softening of microstructure in the case of 3.0 mm probe length. In the case of 3.7 mm probe length, material hook and bottom worm hole were appeared at the end interface of joint area. The most sound FSLW condition with no defects was 3.0 mm probe length and 1500 rpm-100 mm/min. No defects were showed in 1500 rpm-100 mm/min and 1800 rpm-100 mm/min, but Vickers microhardness distribution in TMAZ/HAZ which was fracture zone was lower in 1800 rpm-100 mm/min than in 1500 rpm-100 mm/min. In this condition highest tensile strength, 215 MPa (allowable rate 78% of joint efficient) was obtained.

Thermal, Hydraulic and Mechanical Analysis for Disposal of Spent Nuclear Fuel in Saturated Rock Mass in the KBS-3 Concept. (KBS-3 개념에 따른 포화된 암반내 사용후핵연료 처분을 위한 열, 수리, 역학적 특성 해석)

  • 장근무;황용수;김선훈
    • Tunnel and Underground Space
    • /
    • v.7 no.1
    • /
    • pp.39-50
    • /
    • 1997
  • Reference concepts for the disposal of spent nuclear fuel and the current status of underground rock laboratory were studied. An analysis to simulate the deep disposal of spent nuclear fuel in saturated rock mass was conducted. Main input parameters for numerical study were determined based on the KBS-3 concept. A series of results showed that the temperature distribution around a cavern reached the maximum value at about 10 years after the emplacement of spent fuel. The maximum temperature at the surface of canister was more than about 12$0^{\circ}C$ at about 4 years. This temperature was not much higher than the temperature criteria to meet the performance criteria of an artificial barrier in the KBS-3 concept. The maximum upward displacement due to the heat generation of spent fuel was about 0.9cm at about 10 years after the emplacement of spent fuel. It turned out that the vertical displacement became smaller with the decrease in heat generation of a canister. The quantity of groundwater inflow into a disposal tunnel increased by about 1.6 times at 20 years after the emplacement of spent fuel with the increase of pore pressure around a cavern.

  • PDF

Diagnosis of cracking in T23 welds for power plant application (보일러용 고강도 T23강의 용접부 손상 원인 분석)

  • Park, Ki-Duck;Ahn, Jong-Suk;Shin, Dong-Hyeok;Lee, Chang-Hee
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.61-61
    • /
    • 2009
  • This paper has been performed in order to figure out the reason of failure in T23 weldments used for boiler tube at 550 $^{\circ}C$. Defects such as cracks and cavities occurred in CGHAZ (coarse grain heat-affected-zone) and multi pass of weld metal, and these crack propagated along grain boundary. Microstructure evolution such as grain growth and carbide precipitation was investigated by optical microscope (OM), transmission electron microscope(TEM). Moreover, Auger electron spectroscope (AES) was employed in order to examine segregation along the grain boundaries. There is significant difference in grain size and precipitation distribution in the region where cracking took place. In addition, sulfur segregation was observed. Based on the results of this investigation, it has been possible to establish that this type of cracks were consistent with reheat cracking and creep damage. Selection of optimal filler metal, heat input, and PWHT temperature is required for prevention in order to avoid this type of cracking.

  • PDF

Effect of Welding Parameters on the Friction Stir Weldability of 5052 Al alloy (5052 알루미늄 합금 마찰교반접합부 특성에 미치는 접합인자의 영향)

  • 이원배;김상원;이창용;연윤모;장웅성;서창제;정승부
    • Journal of Welding and Joining
    • /
    • v.22 no.3
    • /
    • pp.69-76
    • /
    • 2004
  • Effects of friction stir welding parameters such as tool rotation speed and welding speed on the joints properties of 5052 Al alloys were studied in this study. A wide range of friction stir welding conditions could be applied to join 5052 AA alloy without defects in the weld zone except for certain welding conditions with a lower heat input. Microstructures near the weld zone showed general weld structures such as stir zone (SZ), thermo-mechanically affected zone (TMAZ) and heat affected zone (HAZ). Each zone showed the dynamically recrystallized grain, transient grain and structure similar to base metal's, respectively. Hardness distribution near the weld zone represented a similar value of the base metal under wide welding conditions. However, in case of 800 rpm of tool rotation speed, hardness of the stir zone had a higher value due to the fine grain with lots of dislocation tangle, a higher angle grain boundary and some of Al3Fe particles. Except joints with weld defects, tensile strength and elongation of the joints had values similar to the base metal values and fracture always occurred in the regions approximately 5mm away from the weld center.