• 제목/요약/키워드: Heat injection

검색결과 725건 처리시간 0.025초

정적연소실내의 디젤분무증발과 연소특성에 관한 연구 (A Study on the Diesel Spray Evaporation and Combustion Characteristics in Constant Volume Chamber)

  • 김상호;김석준;이만복;김응서
    • 한국자동차공학회논문집
    • /
    • 제2권6호
    • /
    • pp.102-109
    • /
    • 1994
  • As a fundamental study to apply high pressure injection system to direct injection diesel engine, fuel injection system and constant volume combustion chamber were made and the behaviors of evaporating spray with the variation of injection pressure and the ambient gas temperature were observed by using high speed camera, and the combusion characteristics with the variation of injection pressure and A/F ratio were analyzed. As injection pressure increases, spray tip penetration and spray angle increase and, as a results spray volume increases. This helps an uniform mixing of fuel and air. Spray liquid core length decreases as ambient gas temperature increases, while it decreases as injection pressure increases but the effect of ambient gas temperature is dorminant. As injection pressure increases, ignition delay is shortened and combustion rate being raised, maximum heat release rate increases. It become clear that High injection pressure has high level of potential to improve the performance of DI-diesel engine.

  • PDF

분사칼럼식 직접접촉열교환기의 열전달특성에 관한 수치적 연구 (A Numerical Study on Heat Transfer Characteristics in a Spray Column Direct Contact Heat Exchanger)

  • 강용혁;김남진;김종보
    • 설비공학논문집
    • /
    • 제12권8호
    • /
    • pp.735-744
    • /
    • 2000
  • In order to define the heat transfer characteristics in a spray column direct contact heat exchanger, the development of a multidimensional numerical model and computational algorithm is essential to analyze the inherent multidimensional characteristics of a direct contact heat exchanger. In the present study, it has been carried out numerical calculations using a two-dimensional model for operation of a direct contact heat exchanger. Such operational and system parameters as the injection velocity, void fraction, aspect ratio and injection temperature of each fluid are examined thoroughly to assess their influence on the performance of a spray column. Analyzed results has shown that our two-dimensional model predicts the heat transfer phenomena well in a spray column.

  • PDF

초음속유동장 내에 돌출된 실린더와 2차분사 홀 주변에서의 열전달 현상 연구 (Heat transfer in the perturbed boundary layer by cylinder and secondary injection in supersonic flow)

  • 이종주;유만선;송지운;조형희
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2007년도 제28회 춘계학술대회논문집
    • /
    • pp.276-280
    • /
    • 2007
  • 초음속 유동장내에 분사된 이차제트 주변에서의 열전달 현상을 고찰 하였다. 초음속 유동장내에 등 열유속조건이 적용되도록 히터를 표면에 설치하였으며, Jet to freestream momentum ratio(운동량비)에의 변화에 따른 2차분사를 하여, 2차분사홀 주변의 표면온도 변화를 적외선 카메라를 통하여 측정하였으며, 이를 바탕으로 대류열전달 계수를 계산하였다. 또한 초음속 유동장 내에서 돌출된 실린더 주변 표면의 대류열전달 계수 측정 결과와 비교 하였다. 실린더의 주유동에 대한 기울어진 각도와 2차분사의 운동량비는 표면 대류열전달계수 분포에 중요한 요인으로 작용하였다.

  • PDF

귀 체온계 측온부의 이중 사출 공정 최적화에 관한 연구 (A study on optimization of the double injection process for temperature measuring part of an ear thermometer)

  • 백승익;정욱철;김인관;신광일;김태완
    • Design & Manufacturing
    • /
    • 제16권1호
    • /
    • pp.1-8
    • /
    • 2022
  • The importance of fast and accurate body temperature measurement with a portable thermometer is increasing. In order to reduce the temperature measurement response time of the infrared ear thermometer, it is very important to develop a structure for a thermometer having an efficient heat transfer path. Most of the existing ear thermometers are single structures that do not consider thermal efficiency, which may delay measurement time and reduce measurement accuracy. Therefore, in this study, the upper part of the thermometer in contact with the ear is made of a thermally conductive material, and the lower part of the thermometer is made of a thermal barrier material so that heat can be concentrated on the infrared sensor of the thermometer by blocking the upper part of the heat. For the efficiency of production, it was intended to be manufactured through the double injection process, and for this purpose, in this paper, the optimal process parameters were derived through the double injection process analysis.

NUMERICAL SOLUTIONS OF AN IMPACT OF NATURAL CONVECTION ON MHD FLOW PAST A VERTICAL PLATE WITH SUCTION OR INJECTION

  • Ambethkar, V.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제12권4호
    • /
    • pp.201-202
    • /
    • 2008
  • Because of the importance of suction or injection in the fields of aerodynamics, space science and many other industrial applications, our present study is motivated. The effect of natural convection on MHD flow past a vertical plate with suction or injection is studied. We have tried to solve the dimensionless governing equations by using finite difference scheme. To ensure the validity of our numerical solutions, we have compared our numerical solutions for temperature and velocity for the case of suction and injection for unit Prandtl number with the available exact solutions in the literature. The corresponding codes were written in Mathematica 5.0 for calculating numerical solutions for temperature and velocity and the comparison between the exact and numerical solutions. For the purpose of discussing the results some numerical calculations are carried out for non-dimensional temperature T, velocity u, skin friction ${\tau}$ and the Nusselt number $N_u$, by making use of it, the rate of heat transfer is studied.

  • PDF

광학시뮬레이션과 새로운 사출성형법을 사용한 TFT-LCD용 고휘도 프리즘 도광판 (High Brightness Prism Light-guide Plate for TFT-LCDs Using Optical Simulation and Novel Injection Mold Process)

  • 한정민;손진근
    • 전기학회논문지P
    • /
    • 제61권2호
    • /
    • pp.93-96
    • /
    • 2012
  • We have designed high performance prism light-guide plate (LGP) in 17 inch TFT-LCD. In test result to embody high brightness BLU in case of LGP of base and upper surface with 17 inch, thickness 8mm adding prism construct. Using optical simulation, we forecast the brightness and uniformity in LGP with prism structure. And we adopted novel injection mold method and Nickel stamper to make actual evolution sample. Novel injection mold process has steady heating time zone in heat cycle time of injection mold process. For this novel heat cycle control, we achieved above 90[%] height prism structure as our design. It is superior brightness improvement than previous that of printing form about some 20[%] and in this course to embody actual material it succeeded prism LGP production by 17 inch injection form process.

직접분사식 수소연료의 분무 및 연소특성에 관한 연구 (A Study on the Characteristics of Injection and Combustion with Directly Injected Hydrogen Fuel)

  • 이성욱;기완수
    • 한국자동차공학회논문집
    • /
    • 제15권5호
    • /
    • pp.24-29
    • /
    • 2007
  • This study aims to provide a fundamental data for directly injected hydrogen fuel engines. Spray, ignition and combustion characteristics of hydrogen were studied using constant volume chamber. For spray visualization, hydrogen was vertically injected into a combustion chamber at various condition, for example, injection pressure, ambient pressure. And an argon laser was used for the shadowgraph photography by applying optical method. Also, to investigate heat-release rate and flame propagations, spark was ignited on hydrogen injected at the different time after injection and the duration of injection was also changed. Processes of ignition and combustion were analyzed by heat-release rate calculated by pressure history and were observed by shadowgraph photography The results gave much knowledge of spray, ignition and combustion characteristics of hydrogen.

IDI 디젤기관의 개선된 단일영역 열발생량 계산 (Advanced One-zone Heat Release Analysis for IDI Diesel Engine)

  • 김규보;전충환;장영준;이석영
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권7호
    • /
    • pp.1101-1110
    • /
    • 2004
  • An one-zone heat release analysis was applied to a 4 cylinder indirect injection diesel engine. The objective of the study is to calculate heat release accurately considering the effect of specific heat ratio. heat transfer and crevice model and to find out combustion characteristics of an indirect diesel engine considering the effect of the pressures in main and swirl chambers. Especially specific heat ratio indicating combustion characteristics is adapted. instead of that indicating matter properties, which has been used in former studies Moreover by adaption of blowby model, cylinder gas mass became accurately calculated. Therefore, with ideal gas equation, calculating cylinder gas temperature, it was found to affect heat transfer loss and heat release. Determining heat transfer constants $C_1$. $C_2$ as 0.6 respectively. the integrated gross heat release values were predicted well for the measured value at various engine speed, full load operating conditions. The curve of heat release rate was similar to SI engine rather than DI engine. That is originated from that swirl chamber reduce an instant combustion which occurs in DI engine due to ignition delay on early stage of combustion.

자동차 플라스틱 부품의 내열변형 예측에 관한 연구 (A study on the warpage and post-deformation in heat resistance test of automotive plastic components)

  • Kim, H.Y.;Kim, J.J.;Kim, J.S.
    • 한국정밀공학회지
    • /
    • 제13권5호
    • /
    • pp.44-52
    • /
    • 1996
  • A procedure predicting warpage and post-deformation due to heat resistance test is presented. The procedure is applied to the injection molding processes of automotive plastic components, which are the door trim and the instrument pannel. The warpage of products is obtained from the residual stress after filling, packing and cooling process, and the post deformation due to the heat resistance test is calculated in the structural analysis of the product at the ejection temperature with the initial condition of residual stress, the boundary conditions and heat resistance conditions. The analyses give some useful guide lines in the design of automotive plastic parts which should satisfy heat resistance regulation.

  • PDF

4-stroke 디젤엔진의 성능예측에 관한 연구

  • 오태식;오세종;양재신
    • 오토저널
    • /
    • 제4권2호
    • /
    • pp.58-68
    • /
    • 1982
  • It is well known to diesel engineers that the heat release pattern is one of the most important factors affecting engine performance. Thorough research in heat release pattern has materially helped the progress in high-speed diesel engine development . This paper is based on the research conducted at KAIST and Daewoo Heavy Industry last year. The purpose of this paper is to determine the heat release pattern in combustion chamber of MAN M type, the famous low-noise engine. Thermodynamic cycle simulation was performed using Whitehous-Way's heat release pattern with modified coefficients and Annand's heat transfer model. Instantaneous temperature and pressure of gas in cylinder could be determined by the numerical solution of simultaneous equation of mass conservation, equation of energy conservation, and state equation of ideal gas. Calculated results were compared with measured values in some details emphasizing upon the factors affecting rate of heat release. The agreement was fairly good and revealed why M type should have lower burning velocity at the early part of combustion in spite of high injection rate. Additional results by parametric studies were given in relation to fuel injection conditions for further application to engine development.

  • PDF