• Title/Summary/Keyword: Heat injection

Search Result 727, Processing Time 0.027 seconds

Injection molding analysis for LED outdoor lighting top cover of one heat sink body type structure (방열체 일체형 구조의 LED 아웃도어 등기구 상부커버에 관한 사출성형해석)

  • Lee, Kwan-Young
    • Design & Manufacturing
    • /
    • v.14 no.2
    • /
    • pp.42-48
    • /
    • 2020
  • This study is on the injection molding analysis for the LED outdoor lighting top cover of one heat sink body type structure. Thermoplastic and thermosetting resins were applied to compare the thermal properties during the injection molding process. The thermoplastic resin is used in this study due to special characteristics that it is light, good strength and dose long not transmute quality even if pass long time. The thermosetting resin is applied to this study due to good in strength, lightweight and excellent etc, thermal conductivity. This study presented a preliminary analysis of fill time, weld line, air trap etc. for the injection molding process of LED lamp cover and body through simulation using Moldflow. As a result of the study, it was selected HTM-102 material because the thermosetting resin has excellent strength and heat conductivity.

PERFORMANCE EVALUATION OF COOLING CHANNELS IN A PLASTIC INJECTION MOLD MODEL (사출금형의 냉각채널 성능 평가)

  • Kim, H.S.;Han, B.Y.;Lee, I.C.;Kim, Y.M.;Park, H.K.
    • Journal of computational fluids engineering
    • /
    • v.17 no.2
    • /
    • pp.53-57
    • /
    • 2012
  • Design of the cooling channels of a plastic injection mold affects the quality and the productivity of the injection processes. In the injection process, the melted resin with high temperature enters the mold cavity, and just after the cavity is filled the heat should be dissipated through the cooling channels simultaneously. The purpose of this study is to analyse the heat transfer phenomenon and to estimate the temperature distribution in the mold to evaluate the cooling effect of the channels. The injection mold is assumed to have cooling channels of circular cross section and each channel has the same coolant flow rate. and The cavity has a rectangular shape. The results show that as the cooling channels get closer to the cavity surface, the cooling efficiency increases as might easily be guessed. However, due to the final hot resin flow from the gate an intensive cooling is required in that region.

Analysis of a small steam injected gas turbine system with heat recovery (열회수를 고려한 소형 증기분사 가스터빈 시스템 해석)

  • Kim, Dong-Seop;Jo, Mun-Gi;Go, Sang-Geun;No, Seung-Tak
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.8
    • /
    • pp.996-1008
    • /
    • 1997
  • This paper describes a methodology and results for the analysis of a small steam injected gas turbine cogeneration system. A performance analysis program for the gas turbine engine is utilized with modifications required for the model of steam injection and the heat recovery steam generator (HRSG). The object of simulation is a simple cycle gas turbine engine under development which adopts a centrifugal compressor. The analysis is based on the off-design operation of the gas turbine and the compressor performance map is utilized. Analyses are carried out with the injection ratio as the main parameter. The effect of steam injection on the power and efficiency of gas turbine and cogeneration capacity is investigated. Also presented is the variation in the main operating parameters inside the HRSG. Remarkable reduction in NOx generation by steam injection is confirmed. In addition, it is observed that for the 100% power operation the temperature of the cooled first nozzle blade decreases by 100.deg. C at full steam injection, which seems to have a favorable effect on the engine life time.

Numerical Study on the Effect of Nozzle Geometry on the Small CRDI Engine Performance (노즐 형상 변경이 소형 CRDI 엔진의 성능에 미치는 영향에 대한 수치 해석적 연구)

  • Min, Se Hun;Suh, Hyun Kyu
    • Journal of ILASS-Korea
    • /
    • v.20 no.4
    • /
    • pp.254-260
    • /
    • 2015
  • The objective of this study is to investigate the effect of multi-hole nozzle on the performance of small CRDI engine. Combustion and exhaust emission characteristics of engine were studied by using CFD simulation with ECFM-3Z combustion model. The conditions of simulation were varied with nozzle geometry, injection timing and injection quantity. In addition, the results were compared in terms of combustion pressure, rate of heat release, $NO_x$ and soot emissions. It was found that combustion pressure was increased when injection timing was advanced. The rate of heat release of 6 hole nozzle was higher than that of 12 hole nozzle since the quantity of fuel impinged at the bottom of piston rim was different under different injection timing conditions. In the case of $NO_x$ emission, 6 hole nozzle generated more $NO_x$ emission than 12 hole nozzle. On the other hand, in the case of soot emission, 12 hole nozzle showed higher value than 6 hole nozzle because injected fuel droplets from multi-hole nozzle were coalesced.

Design of Gas-Injection Port of an Asymmetric Scroll Compressor for Heat Pump Systems (히트 펌프용 비대칭 스크롤 압축기의 가스 인젝션 포트 설계)

  • Kim, Yong-Hee;Kim, Hyun-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.6
    • /
    • pp.300-306
    • /
    • 2015
  • For an asymmetric scroll compressor for heat pump application, a numerical simulation was carried out to investigate the effects of injection port design on the compressor's performance under gas injection. To validate the simulation, the numerical results were compared with experimental results obtained from a scroll compressor with a base injection port design. There was good agreement between simulation and experimental results, with around a 1% difference in the injection mass flow rate when the injection pressure was below $12kgf/cm^2A$ for the heating mode. Various injection port angular positions were numerically tested to yield better injection performance. The largest improvement in heating capacity was obtained at angles of $240^{\circ}$ and $200^{\circ}$ inward from the scroll wrap end angle for low-temperature and standard heating conditions, respectively, while the maximum COP improvement was at $365^{\circ}$ and $280^{\circ}$, respectively. A considerable improvement in cooling capacity was also found at the injection port angle of $240^{\circ}$.

Study on the aquifer utilization for a ground water heat pump system (지하수 히트펌프 시스템의 대수층 활용 사레 연구)

  • Shim, Byoung-Ohan;Lee, Chul-Woo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.32-35
    • /
    • 2006
  • The validation of a groundwater source heat pump system installation site is estimated by bydrogeothermic model ing. The hydraulic characteristics of the aquifer system is evaluated from pumping and recovery tests. In addition, the temperature distribution by the pumping and the injection of groundwater, and water level fluctuations are simulated by numerical modeling. The total cooling and heating load for the building is designed as 120RT(refrigeration ton) and the ground water source heat pump system covers 50RT as a subsidiary system The scenario of heat pump operation is organized as pumping and inject ion of groundwater that is performed for 8 hours per day in cooling mode for 90 days during the summer season The heat transfer by the injected warm water is limited near the inject ion wells in the simulated temperature distribution. The reason is that the given operation time is too short to expect broad thermal diffusion in large volume of the aquifer in the simulation time The simulated groundwater level and temperature distribution can be used as important data to develope an energy effective pumping and injection well system. Also it will be very useful to evaluate the hydraulic capacity of a target groundwater reservoir.

  • PDF

THE LEVEL OF RESIDUAL MONOMER IN INJECTION MOLDED DENTURE BASE MATERIALS

  • Lee Hyeok-Jae;Kim Chang-Whe;Kim Yung-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.3
    • /
    • pp.360-368
    • /
    • 2003
  • Statement of Problem: The residual monomer of denture base materials causes hypersensitivity on oral mucosa and intereferes with the mechanical properties of the cured resin. The amount of residual monomer is influenced by materials, curing cycle, processing method, and etc. Purpose: The aim of this study was to investigate the residual methyl methacrylate(MMA) content of injection molded denture base polymer, and to compare this with the self-cured resin and the conventional compression molded heat-cured resin. Materials and Methods: Disc shaped test specimens (50mm in diameter and 3mm thick) were prepared in a conventional flasking technique with gypsum molding. One autopolymerized denture base resins (Vertex Sc. Dentimex. Netherlands) and two heat-cured denture base resins (Vertex RS. Dentimex. Netherlands, Ivocap. Ivoclar Vivadent, USA) were used. The three types of specimens were processed according to the manufacturer's instruction. After polymerization, all specimens were stored in the dark at room temperature for 7 days. There were 10 specimens in each of the test groups. 3-mm twist drills were used to obtain the resin samples and 650mg of the drilled sample were collected for each estimation. Gas chromatography (Agillent 6890 Plus Gas Chromatograph, Agillent Co, USA) was used to determine the residual MMA content of 10 test specimens of each three types of polymer. Results: The residual monomer content of injection molded denture base resins was $1.057{\pm}0.141%$. The residual monomer content of injection molded denture base resins was higher than that of compression molded heat cured resin ($0.867{\pm}0.169%$). However, there was no statistical significant difference between two groups (p>0.01). The level of residual monomer in self cured resin($3.675{\pm}0.791$) was higher than those of injection molded and compression molded heat cured resins (p<0.01). Conclusion: With respect to ISO specification pass / fail test (2.2% mass fraction) of residual monomer, injection molding technique($1.057{\pm}0.141%$) is a clinically useful and safe technique in terms of residual monomer.

Two-phase flow and heat transfer characteristics in a submerged gas injection system (잠겨진 가스분사장치에서의 2상 유동 및 열전달 특성)

  • 최청렬;김창녕
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.6
    • /
    • pp.824-834
    • /
    • 1999
  • Characteristics of two-phase flow and heat transfer were numerically investigated in a submerged gas injection system when temperature of the injected gas was different from that of the liquid. The Eulerian approach was used for both the continuous and dispersed phases. The turbulence in the liquid phase was modeled using the standard $k-\varepsilon$$\varepsilon$ turbulence model. The interphase friction and heat transfer coefficient were calculated from the correlations available in the literature. The turbulent dispersion of the phases was modeled by a "dispersion Prandtl number". In the case with heat transfer where the temperature of the injected gas is higher than the mean liquid temperature, the axial and the radial velocities are lower in comparison with the case of homogeneous temperatures. The results in the present research are of interest in the design and operation of a wide variety of material and chemical processes.

  • PDF

Changes in Performance and Operating Condition of a Gas Turbine Combined Heat and Power System by Steam Injection - A Focus on Compressor Operation (증기분사에 의한 가스터빈 열병합발전 시스템의 성능과 운전조건 변화 - 압축기 작동 변화를 중심으로)

  • Kang, Soo-Young;Kim, Tong-Seop
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.6
    • /
    • pp.68-75
    • /
    • 2011
  • This study simulated the effect of steam injection on the performance and operation of a gas turbine combined heat and power (CHP) system. A commercial simple cycle gas turbine was analyzed. A full off-design analysis was carried out to investigate the variations in not only engine performance but also the operating characteristics of the compressor caused by steam injection. Variation in engine performance and operation characteristics according to various operation modes were examined. First, the impact of full steam injection was investigated. Then, operations aiming to guarantee a minimum compressor surge margin, such as under-firing and partial steam injection, were investigated. The former and latter were turned out to be relatively superior to each other in terms of power and efficiency, respectively.

A Study on the Simultaneous Reduction of NOx and Soot with Diesel-Methanol Stratified Injection System in a Diesel Engine (Part I : Design of Stratified Injection System and Combustion Characteristics of Stratified Injection) (층상연료분사(경유/메탄올)를 이용한 디젤엔진의 NOx와 Soot 동시 저감에 관한 연구 (제1보 : 층상분사장치의 설계 및 층상분사 연소특성))

  • Kang, B.M.;Kim, J.Y.;Lee, S.B.;Lee, T.W.;Ha, J.Y.
    • Journal of ILASS-Korea
    • /
    • v.5 no.2
    • /
    • pp.28-34
    • /
    • 2000
  • To reduce the soot and NOx simultaneously, a new system of stratified injection is developed. This system discharges stratified diesel-methanol in a D. I. Diesel Engine. Nozzle and delivery valve of conventional injection system were remodeled to inject diesel and methanol from one injector sequently. The quantity of diesel and methanol was controled precisely by micrometers mounted on the injection control lack. The real injection ratio of dual fuel was measured by volumetric ratio. We could confirm the capabilities that soot and NOx simultaneously were reduced by diesel-methanol stratified injection from the results of in-cylinder pressure data obtained from combustion experiment by stratified injection, heat release rate and mass fraction bumed.

  • PDF