• 제목/요약/키워드: Heat generation rates

검색결과 86건 처리시간 0.026초

마이크로 리포머의 열 및 역학적 거동 분석 (A Study on Thermal and Mechanical Behaviors of Micro Reformer)

  • 황원재;장재혁;길재형;김상진;이로운;김성한;정기호;오용수
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.235-239
    • /
    • 2005
  • We analyzed the thermal and mechanical behaviors of micro reformer for the purpose of design verifications and modification of micro channels. The reformer designed for hydrogen generation from methanol is essential to PEM(Proton Exchange Membrane) type fuel cell. For the mobile applications, the size and the simplicity would be the most critical issues. We utilized silicon process for micro reformer to obtain the thickness thinner than 2 mm thick. We have used commercial simulation software, IDEAS, to analyze the thermal and mechanical characteristics of micro reformer structure. The heat generation rates of heaters, heat transfer rates, and fluid temperatures are derived from thermal equilibrium relation and these values were used for thermal boundary conditions. We also analyzed the thermal stresses, thermal deformations to examine the possibility of failure.

  • PDF

열원이 있는 삼각형 풀의 높은 Ra수 자연대류 (HIGH Ra NUMBER NATURAL CONVECTION IN A TRIANGULAR POOL WITH A HEAT GENERATION)

  • 김종태;박래준;김환열;홍성완;송진호;김상백
    • 한국전산유체공학회지
    • /
    • 제16권3호
    • /
    • pp.66-74
    • /
    • 2011
  • A fluid in an enclosure can be heated by electric heating, chemical reaction, or fission heat. In order to remove the volumetric heat of the fluid, the walls surrounding the enclosure must be cooled. In this case, a natural convection occurs in the pool of the fluid, and it has a dominant role in heat transfer to the surrounding walls. It can augment the heat transfer rates tens to hundreds times larger than conductive heat transfer. The heat transfer by a natural convection in a regular shape such as a square cavity or semi-circular pool has been studied experimentally and numerically for many years. A pool of an inverted triangular shape with 10 degree inclined bottom walls has a good cooling performance because of enhanced boiling critical heat flux (CHF) compared to horizontal downward surface. The coolability of the pool is determined by comparing the thermal load from the pool and the maximum heat flux removable by cooling mechanism such as radiative or boiling heat transfer on the pool boundaries. In order to evaluate the pool coolability, it is important to correctly expect the thermal load by a natural convection heat transfer of the pool. In this study, turbulence models with modifications for buoyancy effect were validated for unsteady natural convections by volumetric heating. And natural convection in the triangular pool was evaluated by using the models.

저온 평판형 고체산화물 연료전지 내부 열 및 물질전달 현상에 대한 전산해석 (Computational Analysis of Heat and Mass Transfer in a Planar-type Solid Oxide Fuel Cell)

  • 정희석;차훈;손정락;노승탁
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 제17회 워크샵 및 추계학술대회
    • /
    • pp.648-654
    • /
    • 2005
  • The performance prediction of a planar-type solid oxide fuel ceil is conducted by a computational analysis. The transport processes are formulated with the help of a simplified treatment of heat generation by the electrochemical reaction. From the result of the computational analysis, it is shown that the electrochemical reaction is closely related to the transport phenomena inside a solid oxide fuel cell. Transport phenomena including heat and mass transfer have influence on the distribution of local current density and as a result, on the performance characteristics of the fuel cell. Computational analysis is also extended to the parametric study to investigate the performance behavior of the fuel cell with different amount of supplied fuel flow rates. It is also demonstrated that the mathematical formulation and computational procedures proposed in this study can be applied to prove the importance of the specific TPB(Three-Phase-Boundary) area in the manufacturing process of electrodes in a solid oxide fuel cell.

  • PDF

제네틱 알고리듬을 이용한 PCB 채널 내 칩배열의 열적 최적화 (Thermal optimization of the chip arrangement in the PCB channel using genetic algorithm)

  • 백창인;이관수;김우승
    • 대한기계학회논문집B
    • /
    • 제21권3호
    • /
    • pp.405-413
    • /
    • 1997
  • A thermal optimization of the chip arrangement in the PCB channel oriented vertically and cooled by natural convection has been studied. The objective of this study is to find the chip arrangement that minimizes the maximum temperature of the entire PCB channel. SIMPLER algorithm is employed in the analysis, and the genetic algorithm is used for the optimization. The results show that the chip with a maximum volumetric heat generation rate has to be located at the bottom of the channel, and chips with relatively high heat generation rates should not be close to each other, and small chip should not be located between the large chips.

A Comparison of Wavelength Dependence for Laser-assisted Lipolysis Effect Using Monte Carlo Simulation

  • Youn, Jong-In
    • Journal of the Optical Society of Korea
    • /
    • 제13권2호
    • /
    • pp.267-271
    • /
    • 2009
  • The aim of this study is to evaluate wavelength dependence for laser-assisted lipolysis using a mathematical simulation. In this study, a Monte Carlo simulation was performed to simulate light transport in fat and dermal tissue with 3 different laser wavelengths (${\lambda}\;=\;1064\;nm$, 1320 nm, and 1444 nm) that are currently used in clinic settings for laser-assisted lipolysis. The relative rates of heat generation versus penetration depth showed that the greatest amount of heat generation was seen in the tissues at ${\lambda}\;=\;1444\;nm$. This Monte Carlo simulation may help lend insight into the thermal events occurring inside the fat and dermal tissue during laser-assisted lipolysis.

히트싱크를 이용한 전자통신 시스템의 방열설계 프로그램 개발 (Development of Thermal Design Program for an Electronic Telecommunication System Using Heat Sink)

  • 이정환;김종만;전지환;배철호;서명원
    • 대한기계학회논문집B
    • /
    • 제31권3호
    • /
    • pp.256-263
    • /
    • 2007
  • The purpose of this study is to investigate the cooling performance of heat sinks for an electronic telecommunication system by adequate natural convection. Heat generation rates of electronic components and the temperature distributions of heat sinks and surrounding air are analyzed experimentally and numerically. In order to perform the heat transfer analysis for the thermal design of telecommunication system a program is developed. The program used the graphic user interface environment to determine the arrangement of heat sources, interior fan capacity, and heat sink configuration. The simulation results showed that the heat sinks were able to achieve a cooling capacity of up to 230W at the maximum temperature difference of $19^{\circ}C$. To verify the results from the numerical simulation, an experiment was conducted under the same condition as the numerical simulation, and their results were compared. The design program gave good prediction of the effects of various parameters involved in the design of a heat sinks for an electronic telecommunication system.

100 kW급 용융탄산염 연료전지 시스템 개발 II(스택 및 시스템 설계) (System Development of a 100 kW Molten Carbonate Fuel Cell II (Design of Stack and System))

  • 임희천;안교상
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 B
    • /
    • pp.1322-1324
    • /
    • 2002
  • For developing a 100 kW MCFC power generation system, Several design parameters for a fuel cell stack and system analysis results by Cycle Tempo, a processing computer soft ware, were described. Approximately 170 cells are required to generate 100 kW at a current density of 125 mA/$cm^2$ with 6000 $cm^2$ cells. An overall heat balance was calculated to predict exit temperature. The 100 kW power is expected only under pressurized operation condition at 3 atm. Recycle of cathode gas by more than 50% is recommended to run the stack at 125 mA/$cm^2$ and 3 atm. Manifolds should be designed based on gas flow rates for the suggested operating condition. The fuel cell power generation system was designed conceptually with several choices of utilization of anode exhaust gas. Also system efficiency was calculated at various type of system and operation conditions.

  • PDF

100 kW급 용융탄산염 연료전지 시스템 개발 I (시스템 및 스택 설계) (System Development of a 100 kW Molten Carbonate Fuel Cell I (Design concept of Stack and System))

  • 임희천;안교상
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 B
    • /
    • pp.1300-1302
    • /
    • 2001
  • For developing a 100 kW MCFC power generation system. Several design parameters for a fuel cell stack and system analysis results by Cycle Tempo, a processing computer soft ware, were described. Approximately 170 cells are required to generate 100 kW at a current density of $125mA/cm^2$ with $6000cm^2$ cells. An overall heat balance was calculated to predict exit temperature. The 100 kW power is expected only under pressurized operation condition at 3 atm. Recycle of cathode gas by more than 50% is recommended to run the stack at $125mA/cm^2$ and 3 atm. Manifolds should be designed based on gas flow rates for the suggested operating condition. The fuel cell power generation system was designed conceptually with several choices of utilization of anode exhaust gas. Also system efficiency was calculated at various type of system and operation conditions.

  • PDF

저온 지열발전의 출력 극대화를 위한 흡수식 동력 사이클의 시뮬레이션 (Simulation of an Absorption Power Cycle for Maximizing the Power Output of Low-Temperature Geothermal Power Generation)

  • 백영진;김민성;장기창;이영수;윤형기
    • 대한기계학회논문집B
    • /
    • 제34권2호
    • /
    • pp.145-151
    • /
    • 2010
  • 본 연구에서는 지열발전 등과 같은 저온 열원을 에너지원으로 하는 발전에 응용될 수 있는 흡수식 동력 사이클의 출력 최적화를 수행하였다. 이를 위해 정상상태 사이클 시뮬레이션을 수행하여 사이클의 성능을 고찰하였다. 시뮬레이션은 열원과 열침의 입구온도 및 유량을 고정한 상태에서 수행하였으며, 일반적인 발전소의 열원-열침 유량비를 고려하였다. 사이클의 성능은 두 개의 독립변수를 이용하여 나타내었는데, 이는 분리기 입구 암모니아 농도와 터빈 입구 압력이다. 시뮬레이션 결과, $100^{\circ}C$의 지열수와 $20^{\circ}C$의 냉각수(지열수 유량의 5배) 조건에서, 흡수식 동력 사이클을 이용하면 지열수 유량 1 kg/s 당 최대 약 14 kW의 출력을 얻을 수 있음을 보였다.

EXPERIMENTAL INVESTIGATIONS ON HEAT TRANSFER TO CO2 FLOWING UPWARD IN A NARROW ANNULUS AT SUPERCRITICAL PRESSURES

  • Kim, Hwan-Yeol;Kim, Hyung-Rae;Kang, Deog-Ji;Song, Jin-Ho;Bae, Yoon-Yeong
    • Nuclear Engineering and Technology
    • /
    • 제40권2호
    • /
    • pp.155-162
    • /
    • 2008
  • Heat transfer experiments in an annulus passage were performed using SPHINX(Supercritical Pressure Heat Transfer Investigation for NeXt Generation), which was constructed at KAERI(Korea Atomic Energy Research Institute), to investigate the heat transfer behaviors of supercritical $CO_{2}$. $CO_{2}$ was selected as the working fluid to utilize its low critical pressure and temperature when compared with water. The mass flux was in the range of 400 to 1200 $kg/m^{2}s$ and the heat flux was chosen at rates up to 150 $kW/m^{2}$. The selected pressures were 7.75 and 8.12 MPa. At lower mass fluxes, heat transfer deterioration occurs if the heat flux increases beyond a certain value. Comparison with the tube test results showed that the degree of heat transfer deterioration in the heat flux was smaller than that in the tube. In addition, the Nusselt number correlation for a normal heat transfer mode is presented.