DOI QR코드

DOI QR Code

Simulation of an Absorption Power Cycle for Maximizing the Power Output of Low-Temperature Geothermal Power Generation

저온 지열발전의 출력 극대화를 위한 흡수식 동력 사이클의 시뮬레이션

  • Baik, Young-Jin (Solar Thermal and Geothermal Research Center, Korea Institute of Energy Research) ;
  • Kim, Min-Sung (Solar Thermal and Geothermal Research Center, Korea Institute of Energy Research) ;
  • Chang, Ki-Chang (Solar Thermal and Geothermal Research Center, Korea Institute of Energy Research) ;
  • Lee, Young-Soo (Solar Thermal and Geothermal Research Center, Korea Institute of Energy Research) ;
  • Yoon, Hyung-Kee (Solar Thermal and Geothermal Research Center, Korea Institute of Energy Research)
  • 백영진 (한국에너지기술연구원 신재생에너지연구본부 태양열지열연구센터) ;
  • 김민성 (한국에너지기술연구원 신재생에너지연구본부 태양열지열연구센터) ;
  • 장기창 (한국에너지기술연구원 신재생에너지연구본부 태양열지열연구센터) ;
  • 이영수 (한국에너지기술연구원 신재생에너지연구본부 태양열지열연구센터) ;
  • 윤형기 (한국에너지기술연구원 신재생에너지연구본부 태양열지열연구센터)
  • Published : 2010.02.01

Abstract

In this study, an absorption power cycle, which can be used for a low-temperature heat source driven power cycle such as geothermal power generation, was investigated and optimized in terms of power by the simulation method. A steady-state simulation model was adopted to analyze and optimize its performance. Simulations were carried out for the given heat source and sink inlet temperatures, and the given flow rates were based on the typical power plant thermal-capacitance-rate ratio. The cycle performance was evaluated for two independent variables: the ammonia fraction at the separator inlet and the maximum cycle pressure. Results showed that the absorption power cycle can generate electricity up to about 14 kW per 1 kg/s of heat source when the heat source temperature, heat sink temperature, and thermal-capacitance-rate ratio are $100^{\circ}C$, $20^{\circ}C$, and 5, respectively.

본 연구에서는 지열발전 등과 같은 저온 열원을 에너지원으로 하는 발전에 응용될 수 있는 흡수식 동력 사이클의 출력 최적화를 수행하였다. 이를 위해 정상상태 사이클 시뮬레이션을 수행하여 사이클의 성능을 고찰하였다. 시뮬레이션은 열원과 열침의 입구온도 및 유량을 고정한 상태에서 수행하였으며, 일반적인 발전소의 열원-열침 유량비를 고려하였다. 사이클의 성능은 두 개의 독립변수를 이용하여 나타내었는데, 이는 분리기 입구 암모니아 농도와 터빈 입구 압력이다. 시뮬레이션 결과, $100^{\circ}C$의 지열수와 $20^{\circ}C$의 냉각수(지열수 유량의 5배) 조건에서, 흡수식 동력 사이클을 이용하면 지열수 유량 1 kg/s 당 최대 약 14 kW의 출력을 얻을 수 있음을 보였다.

Keywords

References

  1. Maloney, J. D. and R. C. Robertson, 1953, "Thermodynamic Study of Ammonia-Water Heat Power Cycles," ORNL Report CF-53-8-43, Oak Ridge, TN.
  2. Kalina, A. I., 1984, "Combined Cycle System with Novel Bottoming Cycle," ASME Journal of Engineering for Gas Turbines and Power, Vol. 106, pp. 737-742. https://doi.org/10.1115/1.3239632
  3. Mlcak, H. A., 2002, "Kalina Cycle Concepts for Low Temperature Geothermal," Transactions : "Geothermal Resources Council, Vol. 26, pp. 707-714.
  4. Kalina, A. I., 2006, "New Thermodynamic Cycles and Power Systems for Geothermal Applications," Transactions : Geothermal Resources Council, Vol.30, pp. 747-750.
  5. Desideri U. and Bidini G., 1997, "Study of Possible Optimization Criteria for Geothermal Power plants," Energy Conversion and Management, Vol. 38, No. 15, pp. 1681-1691. https://doi.org/10.1016/S0196-8904(96)00209-9
  6. Marston, C. H. and Sanyal, Y., 1994, "Optimization of Kalina Cycles for Geothermal Application," Thermodynamics and the Design, Analysis, and Improvement of Energy Systems, pp. 97-104.
  7. Kalina, A. I. and Leibowitz, H. M., 1994, "Applying Kalina Cycle Technology to High Enthalphy Geothermal Resources," Transactions : Geothermal Resources Council, Vol. 18, pp. 531-536.
  8. Leibowitz, H. M. and Micak, H. A., 1999, "Design of a 2MW Kalina Cycle Binary Module for Installation in Husavik, Iceland," Transactions : Geothermal Resources Council, Vol. 23, pp. 75-80.
  9. Ibrahim, O. M. and Klein, S. A., 1996, "Absorption Power Cycles," Energy, Vol. 21, Issue 1, pp. 21-27. https://doi.org/10.1016/0360-5442(95)00083-6
  10. Valdimarsson, P. and Eliasson, L., 2003, "Factors Influencing the Economics of the Kalina Power Cycle and Situations of Superior Performance," Proceedings of International Geothermal Conferences, pp. 32-40.
  11. Madhawa Hettiarachchi, H. D., Golubovic, M.,Worek, W. M. and Ikegami, Y., 2007, "The Performance of the Kalina Cycle System 11(KCS-11) with Low-Temperature Heat Sources," ASME J. of Energy Resources Technology, Vol. 129, pp. 243-247. https://doi.org/10.1115/1.2748815
  12. Yoonho Song and Eunyoung Ahn, 2005, "Analysis on the Current Status of World Geothermal Energy Resources Utilization and the Future Prospect," Geosystem Engineering, Vol. 42, No. 4, pp. 287-296.
  13. Ibrahim, O. M. and Klein, S. A., 1993, "Thermodynamic Properties of Ammonia-Water Mixtures," ASHRAE Transactions Symposia. CH-93-21-2, pp. 1495-1502.