• 제목/요약/키워드: Heat flux distribution

검색결과 356건 처리시간 0.031초

Statistical Model to Describe Boiling Phenomena for High Heat Flux Nucleate Boiling and Critical Heat Flux

  • Ha, Sang-Jun;No, Hee-Cheon
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1996년도 추계학술발표회논문집(1)
    • /
    • pp.230-235
    • /
    • 1996
  • The new concept of dry area formation based on Poisson distribution of active nucleation sites and the concept of the critical active site density is presented. A simple statistical model is developed to predict the change of slope of the boiling curve up to critical heat flux (CHF) quantitatively. The predictions by the present model are in good agreement with the experimental data. Also it turns out that the present model well explains the mechanism on how the surface wettability influences CHF.

  • PDF

반도체 표면처리공정용 대면적 히터 플레이트의 열전달 특성에 관한 연구 (A Study on the Heat Transfer Characteristics of the Large Dimension Heater Plate for a Semiconductor Process)

  • 이윤용;강환국;문석환
    • 한국표면공학회지
    • /
    • 제43권6호
    • /
    • pp.309-314
    • /
    • 2010
  • The numerical study for the effect of various factors that affect the temperature distribution of the process glass installed above the large rectangular heater plate was carried out. For the calculation, heat flux, distance between heat source and process glass plate, effect of vacuum condition and convection in a chamber were considered as important factors. The results showed that the temperature gradient on the glass was increased at the natural convection because of the buoyancy force increases due to the heated air. Also, the more heat flux and distance between the heater plate and glass increases, the more increasing the temperature gradient was. In the case of isothermal heating wall, the temperature variation was smaller than the uniform heat flux condition.

Specific Heat Measurement of Insulating Material using Heat Diffusion Method

  • Choi, Yeon-Suk;Kim, Dong-Lak
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제14권2호
    • /
    • pp.32-35
    • /
    • 2012
  • The objective of the present work is to develop a precise instrument for measuring the thermal property of insulating material over a temperature range from 30 K to near room temperature by utilizing a cryocooler. The instrument consists of two thermal links, a test sample, heat sink, heat source and vacuum vessel. The cold head of the cryocooler as a heat sink is thermally anchored to the thermal link and used to bring the apparatus to a desired temperature in a vacuum chamber. An electric heater as a heat source is placed in the middle of test sample for generating uniform heat flux. The entire apparatus is covered by thermal shields and wrapped in multi-layer insulation to minimize thermal radiation in a vacuum chamber. For a supplied heat flux the temperature distribution in the insulating material is measured in steady and transient state. The thermal conductivity of insulating material is measured from temperature difference for a given heat flux. In addition, the specific heat of insulating material is obtained by solving one-dimensional heat diffusion equation.

CFD 시뮬레이션 기반 초임계 LNG용 사인함수 PCHE 설계 (Design of sinusoidal shape channel PCHEs for supercritical LNG based on CFD simulation)

  • 판진싱;염은섭
    • 한국가시화정보학회지
    • /
    • 제19권3호
    • /
    • pp.69-76
    • /
    • 2021
  • Printed circuit heat exchanger (PCHE) is a compact heat exchanger with good heat transfer performance, high structure integrity, and reliability over a wide range of temperatures and pressures. Instead of the traditional zigzag and straight shape channel, the sinusoidal shape channel was adopted in this study to investigate the relation of thermal-hydraulic performance and waviness factors (period and amplitude). The local flow characteristics and the heat flux distribution were compared to verify the effects of period and amplitude on heat transfer performance. As the period of channel becomes shorter, the rapid change of the flow direction can produce high flow separation around the corner leading to the disturbance of the boundary layer opposite wall. The nonuniform distribution of flow velocity appeared around the corner positions can promote fluid mixing and lead to higher thermal performance. An evaluation index was used to compare the comprehensive performance of PCHE considering the Nusselt number and Fanning factor. Based on the simulation results, the optimal design parameters of PCHE channel shape were found that the channel with an equivalent bending angle of 15° offers the highest heat flux capacity.

유한 요소 해석을 활용한 직결 주축의 열적 특성 평가 (Evaluation of Thermal Characteristics of a Direct-Connection Spindle Using Finite Element Co-Analysis)

  • 김태원;최진우
    • 한국생산제조학회지
    • /
    • 제22권2호
    • /
    • pp.228-234
    • /
    • 2013
  • This study focuses on development of a finite element model for analysis of thermal characteristics of a direct-connection spindle of a machining center by joint simulation of heat transfer and thermal deformation. Two finite element analyses were carried out procedurally for heat transfer, first, to identify temperature distribution of components of the spindle and then for thermal deformation to identify their structural behavior based on the temperature distribution. It was assumed that the heat transfer between a component revolving and the surrounding air is identical to that between a flat plate and the running air on it and the heat transfer is based on a uniform surface heat flux for turbulent flow. The results from the analyses were compared with those from experiments to validate the finite element model.

Leidenfrost 온도 이상의 가열 벽면과 충돌 시 열전달에 대한 액적 온도의 영향 (Effects of Droplet Temperature on Heat Transfer During Collision on a Heated Wall Above the Leidenfrost Temperature)

  • 박준석;김형대
    • 한국분무공학회지
    • /
    • 제21권2호
    • /
    • pp.78-87
    • /
    • 2016
  • This study experimentally investigated the effects of droplet temperature on the heat transfer characteristics during collision of a single droplet on a heated wall above the Leidenfrost temperature. Experiments were performed by varying temperature from 40 to $100^{\circ}C$ while the collision velocity and wall temperature were maintained constant at 0.7 m/s at $500^{\circ}C$, respectively. Evolution of temperature distribution at the droplet-wall interface as well as collision dynamics of the droplet were simultaneously recorded using synchronized high-speed video and infrared cameras. The local heat flux distribution at the collision surface was deduced using the measured temperature distribution data. Various physical parameters, including residence time, local heat flux distribution, heat transfer rate, heat transfer effectiveness and vapor film thickness, were measured from the visualization data. The results showed that increase in droplet temperature reduces the residence time and increases the vapor film thickness. This ultimately results in reduction in the total heat transfer by conduction through the vapor film during droplet-wall collision.

선박용 대형 디젤 엔진 열 해석을 위한 CFD-FEM 연계 방법의 적용 (Application of CFD-FEM Coupling Methodology to Thermal Analysis on the Large-size Marine Diesel Engine)

  • 김한상;민경덕
    • 한국자동차공학회논문집
    • /
    • 제16권1호
    • /
    • pp.64-70
    • /
    • 2008
  • Temperatures of engine head and liner depend on many factors such as spray and combustion process, coolant passage flow and engine related structures. To estimate the temperature distribution of engine structure, multi-dimensional computational fluid dynamics (CFD) codes have been mainly adopted. In this case, it is of great importance to obtain the realistic wall temperature distribution of entire engine structure. In the present work, a CFD-FEM coupling methodology was presented to address this demand. This approach was applied to a real large-size marine diesel engine. CFD combustion and coolant flow simulations were coupled to FEM temperature analysis. Wall heat flux and wall temperature data were interfaced between combustion simulation and solid component temperature analysis via translator by a commercial CFD package named FIRE by AVL. Heat transfer coefficient and surface temperature data were exchanged and mapped between coolant flow simulation and FEM temperature analysis. Results indicate that there exists the optimum cell thickness near combustion chamber wall to reasonably predict the wall heat flux during combustion period. The present study also shows that the effect of cell refining on predicting in-cylinder pressure during combustion is negligible. Hence, the basic guidance on obtaining the wall heat flux needed for the reasonable CFD-FEM coupling analysis has been established. It is expected that this coupling methodology is a robust tool for practical engine design and can be applied to further assessment of the temperature distribution of other engine components.

알루미늄 다채널 평판관 증발기 내 냉매분배 (Distribution of Air-Water Two-Phase Flow in a Flat Tube Heat Exchanger)

  • 김내현;박태균;한성필;이응렬
    • 설비공학논문집
    • /
    • 제18권10호
    • /
    • pp.800-810
    • /
    • 2006
  • The R-134a flow distribution is experimentally studied for a heat exchanger composed of round headers and 10 flat tubes. The effects of tube protrusion depth as well as mass flux, and quality are investigated, and the results are compared with the previous air-water results. The flow at the header inlet is stratified. For the downward flow configuration, the liquid distribution improves as the protrusion depth or the mass flux increases, or the quality decreases. For the upward configuration, the liquid distribution improves as the mass flux or quality decreases. The protrusion depth has minimal effect. For the downward configuration. the effect of quality on liquid distribution is significantly affected by the flow regime at the header inlet. For the stratified inlet flow, the liquid is forced to rear part of the header as the quality decreases. However, for the annular inlet flow, the liquid was forced to the frontal part of the header as the quality decreased. For the upward flow, the effect of the mass flux or quality on liquid distribution of the stratified inlet flow is opposite to that of the annular inlet flow. The high gas velocity of the annular flow may be responsible for the trend. Generally, the liquid distribution of the stratified inlet flow is better than that of the annular inlet flow. Possible explanation is provided from the flow visualization results.

Spur Gear의 표면온도상승에 관한 연구 Part I - Flash Temperature (A Study on the Surface Temperature Rise in Spur Gear Part I - Flash Temperature)

  • 김희진;문석만;김태완;구영필;조용주
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2000년도 제31회 춘계학술대회
    • /
    • pp.251-257
    • /
    • 2000
  • A numerical simulation of the temperature rise for sliding surface in dry contact is based on Jaeger's formula combined with a calculated heat input. A gear tooth temperature analysis was performed. The pressure distribution has the Hertzian pressure distribution on the heat source. The heat partition factor is calculated along line of action. A Temperature distribution of tooth surface is calculated about before and after profile modification. A Temperature of addendum and deddendum in modified gear have reduced.

  • PDF

Spur Gear 치면의 표면상승온도 예측에 관한 연구 (The Study for Estimation of the Surface Temperature Rise in Spur Gear Tooth)

  • 김희진;구영필;조용주
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제25권2호
    • /
    • pp.331-337
    • /
    • 2001
  • A numerical simulation of the temperature rise for sliding surface in dry contact is based on Jaegers formula combined with a calculated heat input. A gear tooth temperature analysis was performed. The pressure distribution has the Hertzian pressure distribution on the heat source. The heat partition factor is calculated along ling of action. A Temperature distribution of tooth surface is calculated about before and after profile modification. A Temperature of addendum and deddendum in modified gear have reduced.

  • PDF