• Title/Summary/Keyword: Heat exchanger performance

Search Result 1,178, Processing Time 0.022 seconds

Performance analysis of a R744 and R404A cascade refrigeration system with internal heat exchanger (내부 열교환기 부착 R744-R404A용 캐스케이드 냉동시스템의 성능 분석)

  • Oh, H.K.;Son, C.H.
    • Journal of Power System Engineering
    • /
    • v.16 no.1
    • /
    • pp.38-43
    • /
    • 2012
  • This paper describes an analysis on performance of R744-R404A cascade refrigeration system with internal heat exchanger to optimize the design for the operating parameters of the system. The operating parameters considered in this study include subcooling and superheating degree, internal heat exchanger and compression efficiency, evaporating and condensing temperature in the R744 low- and R404A high-temperature cycle and temperature difference of cascade heat exchanger. The main results are summarized as follows : COP of cascade refrigeration system increases with the increasing of compression efficiency, but decreases with the increasing temperature difference of cascade heat exchanger. Also, the COP increases with the increasing of internal heat exchanger efficiency in high-temperature cycle, but decreases with that in low-temperature cycle. Therefore, internal heat exchanger efficiency, compressor efficiency and temperature difference of cascade heat exchanger on R744-R404A cascade refrigeration system have an effect on the COP of this system.

Development of Performance Analysis Model of $CO_2$ Heat Pump Heat Exchanger ($CO_2$ 히트펌프 열교환기의 성능 해석 모델 개발)

  • Kim, Min-Seok;Chang, Young-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.651-656
    • /
    • 2006
  • A performance analysis model has been developed for fin-tube type heat exchanger for $CO_2$ heat pump. The model uses the tube-by-tube method Because air-side thermal resistance has a great portion among total thermal resistances, it is important to understand air-side heat transfer characteristics. The air-side heat transfer correlation has been proposed from experiments using water. The developed model was confirmed by experimental results and can be used for the performance analysis of heat exchanger.

  • PDF

A Study on the Performance Analysis of the PAO-AIR Heat Exchangers in an Aircraft (항공기용 PAO-공기 열교환기 성능분석 연구)

  • Park, Dong-Myung;Joung, Yong-In;Moon, Woo-Yong;Park, Sung-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.11
    • /
    • pp.934-939
    • /
    • 2012
  • In this study, the performance validation of a PAO-AIR heat exchanger developed for the ECS(Environmental Control System) of a UAV(Unmanned Aerial Vehicle) has been carried out. The performance goals of a PAO-AIR heat exchanger were established by the system schematic analysis. And a heat exchanger to be met the ECS performance was developed by a detailed design and a precision manufacture. Using the developed heat exchanger, the experiment about pressure loss and effectiveness, overall heat transfer coefficient to prove the developed PAO-AIR heat exchanger performance in various conditions as well as a design point of heat exchanger was performed and the experimental results were analyzed. As the experimental results, the performance and characteristic of a PAO-AIR heat exchanger developed for the ECS of a UAV were analyzed and the development suitability was proved.

Experimental Study on Performance Comparison of Air-Conditioner with PF Heat Exchanger (PF 열교환기를 적용한 공조기의 성능 비교 실험연구)

  • Kwon, Young-Chul;Park, Yoon-Chang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.3
    • /
    • pp.470-475
    • /
    • 2009
  • In the present study, the heat transfer characteristics of the fin-tube and PF heat exchangers and the performances of the air-conditioner are experimentally investigated. Also, Cooling Seasonal Performance Factor(CSPF) of the air-conditioner is evaluated. For the heat exchanger experiment, the heat transfer and pressure drop are obtained. For the air-conditioner experiment, the cooling capacity, input power and COP are obtained. The air-enthalpy calorimeter and the constant temperature water bath are used. As the inlet air velocity increases, the heat transfer rate and pressure drop of the heat exchanger increased. PF heat exchanger has smaller refrigerant weight and larger capacity and COP than the fin-tube heat exchanger. The performance of PF-2 heat exchanger with the squarer fin is more excellent than that of PF-1 heat exchanger with the triangler fin. Also, CSPF of the fm -tube and PF heat exchanger is evaluated.

Study on the Performance Evaluation of Smart Heating and Cooling Heat Pump System in a Balancing Well Cross-Conditioned Ground Heat Exchanger (Balancing Well 교차혼합 지중열교환기의 스마트 냉난방 히트펌프 시스템의 성능평가에 관한 연구)

  • Lee, Changhee;Kim, Donggyu;Yu, Byeoungseok;Kim, Booil
    • New & Renewable Energy
    • /
    • v.16 no.4
    • /
    • pp.41-48
    • /
    • 2020
  • This study performed a single hole operation method using a balancing well-cross-mixed underground heat exchanger, and conducted thermal performance studies of an SCW-type underground heat exchanger using a two-well. The study attempted to change the existing operating method of the two adjacent SCW underground heat exchangers with one ball each. The SCW-type geothermal heat exchanger is considered to enable up to 20% of bleed discharge at maximum load, which makes groundwater usage unequal. The efficiency factor of the geothermal system was improved by constructing the discharged water by cross-mixing two balancing wells to prevent the discharge of groundwater sources and keep the temperature of the underground heat exchanger constant. As a result of the cooling and heating operation with the existing SCW heat exchange system and the balancing well-cross-mixed heat exchange system, the measured performance coefficient improved by 23% and 12% in cooling and heating operations, respectively. In addition, when operating with a balanced cross-mixing heat exchange system, it has been confirmed that the initial basement temperature is constant with a standard deviation of 0.08 to 0.12℃.

Performance Analysis of Moving Bed Heat Exchanger of Solid Particles in a Vertical Pipe (고체입자 이동층을 이용한 수직 전열관 열교환기의 성능해석)

  • Park, Sang-Il;Choe, Gyeong-Bin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.9
    • /
    • pp.2916-2923
    • /
    • 1996
  • A numerical analysis of the moving bed heat exchanger of solid particles inside the vertical pipe was performed using finite difference method. Also, the theoretical solutions were obtained for comparison when the wall heat flux or the wall temperature was assumed constant. The comparison showed that their results agreed well each other. The moving bed heat exchanger was classified as countercurrent-flow, parallel-flow, and cross-flow types according to the gas flow direction. For each type, the thermal efficiency of heat exchanger was calculated as a function of non-dimensional parameters such as the characteristic length of heat exchanger, Biot number and the ratio of thermal capacities of gas and solid particles.

Fouling Reduction Characteristics of a Fluidized Bed Heat Exchanger for Flue Gas Heat Recovery (연도가스 열회수용 순환유동층 열교환기의 오염저감특성)

  • 이금배;전용두
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.8
    • /
    • pp.770-777
    • /
    • 2004
  • Fouling and cleaning tests are performed for a uniquely designed 7,000 ㎉/hr fluidized bed heat exchanger for exhaust gas heat recovery. Fuel rich condition is maintained in the combustor for a limited time period to generate soot that is to be deposited on the heat transfer surfaces (fouling) and 600 Um glass beads are circulated inside the heat exchanger system for cleaning and enhancing the heat transfer performance. According to the present experimental study, performance degradation mode could be monitored and the effect of particle circulation on the heat transfer improvement could be identified. Through the present study, it is demonstrated that circulating particles contribute not only to the fouling reduction in gas side, but also to the heat transfer enhancement of the unit, while other possible aging factors including water side corrosion seemed to contribute to the accumulated performance deterioration.

The Effect of PVE Oil on the Evaporation/Condensation Heat Transfer Performance of Fin-tube Heat Exchanger (핀-튜브 열교환기에서 PVE오일이 증발/응축 열전달 성능에 미치는 영향)

  • Lee, Hyun-Woo;Jeong, Young-Man;Lee, Jae-Keun;Park, Nae-Hyun
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1067-1072
    • /
    • 2009
  • In vapor compression systems which use refrigerant as a working fluid, the oil is commonly used for compressor lubrication. Since the presence of lubrication oil can change the characteristics properties of refrigerant, the oil affects the heat transfer performance of heat exchanger to a large extent. In this paper, we focus on the effect of PVE oil experimentally on heat transfer performance of the fin-tube heat exchangers which use R410A as a refrigerant. To evaluate the heat transfer performance, the refrigerant to air type test facility chamber has been used. Fin-tube heat exchanger with grooved has been tested while according to the oil mass fraction variation from nearly zero to 1.7 wt%. It was found that the low level of oil mass fraction has an obvious effect on heat transfer performance, while the high level seems no significant influence. The influence of the oil mass fraction to heat transfer performance, however, is different between evaporation and condensation.

  • PDF

Shell and Tube Heat Exchanger Performance Estimation by Changing Shell-side Fluid Characteristics (쉘-튜브 열교환기에서의 쉘쪽 유체의 특성에 따른 열교환기 성능 변화 예측 사례)

  • Baek, Seungwhan;Jung, Youngsuk;Cho, Kiejoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.2
    • /
    • pp.27-37
    • /
    • 2019
  • The shell and tube heat exchangers installed in the propulsion system test complex (PSTC) at the Naro Space Center heats cryogenic helium to 500 K with a heat transfer oil. As the experimental helium outlet temperature was lower than expected (less than 100 K), the boundary layer effect of the heat transfer oil is predicted to be the cause of the performance deterioration. A computational fluid dynamics (CFD) analysis was performed to verify where the boundary layer effect exists; however, the boundary layer effect has no significant impact on the performance of the heat exchanger. An alternative method to improve the performance of the heat exchanger by changing the heat transfer oil has been discussed in this paper. The low viscosity and high thermal conductivity at high temperature (~500 K) of heat transfer oil at the shell-side are required to improve the thermal performance of the heat exchanger. The experimental performance of the heat exchanger, used to exchange heat between the cryogenic helium and hot heat transfer oil at the PSTC are summarized in this paper.

Thermal and flow analysis for the optimization of a parallel flow heat exchanger (평행류 열교환기의 열.유동 해석 및 최적화)

  • Lee, Gwan-Su;Jeong, Ji-Wan;Yu, Jae-Heung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.2
    • /
    • pp.229-239
    • /
    • 1998
  • The present paper examines the thermal and flow characteristics of a parallel flow heat exchanger and investigates the effects of the parameters on thermal performance by defining the flow nonuniformity. Thermal performance of a parallel flow heat exchanger is maximized by the optimization using Newton's searching method. The flow nonuniformity is chosen as an object function. The parameters such as the locations of separator, inlet, and outlet are expected to have a large influence on thermal performance of a parallel flow heat exchanger. The effect of these parameters are quantified by flow nonuniformity. The results show that the optimal locations of inlet and outlet are 19.73 mm and 10.9 mm, respectively. It is also shown that the heat transfer increases by 7.6% and the pressure drop decreases by 4.7%, compared to the reference model.