DOI QR코드

DOI QR Code

Shell and Tube Heat Exchanger Performance Estimation by Changing Shell-side Fluid Characteristics

쉘-튜브 열교환기에서의 쉘쪽 유체의 특성에 따른 열교환기 성능 변화 예측 사례

  • Baek, Seungwhan (Launcher Propulsion System Team, KSLV-II R&D Head Office, Korea Aerospace Research Institute) ;
  • Jung, Youngsuk (Launcher Propulsion System Team, KSLV-II R&D Head Office, Korea Aerospace Research Institute) ;
  • Cho, Kiejoo (Launcher Propulsion System Team, KSLV-II R&D Head Office, Korea Aerospace Research Institute)
  • Received : 2018.06.12
  • Accepted : 2019.03.10
  • Published : 2019.04.01

Abstract

The shell and tube heat exchangers installed in the propulsion system test complex (PSTC) at the Naro Space Center heats cryogenic helium to 500 K with a heat transfer oil. As the experimental helium outlet temperature was lower than expected (less than 100 K), the boundary layer effect of the heat transfer oil is predicted to be the cause of the performance deterioration. A computational fluid dynamics (CFD) analysis was performed to verify where the boundary layer effect exists; however, the boundary layer effect has no significant impact on the performance of the heat exchanger. An alternative method to improve the performance of the heat exchanger by changing the heat transfer oil has been discussed in this paper. The low viscosity and high thermal conductivity at high temperature (~500 K) of heat transfer oil at the shell-side are required to improve the thermal performance of the heat exchanger. The experimental performance of the heat exchanger, used to exchange heat between the cryogenic helium and hot heat transfer oil at the PSTC are summarized in this paper.

쉘-튜브 열교환기가 나로우주센터 추진기관종합시험장(PSTC)에 설치되었으며, 이 열교환기는 극저온의 헬륨을 고온의 열매유와 열교환하여 약 500 K 까지 가열시키는 역할을 한다. 열교환기에서 토출되는 헬륨의 온도가 설계보다 100 K 낮게 나옴에 따라, 성능저하의 원인으로 열매유의 격막효과가 지목되었다. CFD 해석을 통해 격막효과의 유무를 확인하였으며, 격막효과에 의한 열교환기 성능저하는 미미한 것으로 판단되었다. 추가적으로 열교환기의 성능을 증가시키기 위하여 열매유 교체에 따른 열교환기 성능 변화를 알아보았다. 열매유를 사용하는 열교환기의 성능향상을 위해서는 500 K 부근에서 점성이 낮아야 하고, 열전도도가 높아야 한다는 것을 확인할 수 있었다. 추진기관종합시험장에서 운용된 극저온 헬륨과 고온 열매유의 열교환 시스템의 시험 결과를 본 논문에서 확인할 수 있다.

Keywords

References

  1. Jung Y.S., Lim S.H., Cho G.S., and Oh S.H., "Overview of the Propulsion System for KSLV-II," The Korean Society for Aeronautical & Space Sciences Conference, Jeju, Korea, pp. 269-275, 2012.
  2. Silaipillayarputhur, K. Design of a hot oil heat exchanger system, International Journal of applied engineering Research Vol. 11, No. 20, pp. 10102-10124, 2016.
  3. Lee K.W,. Lee. J.Y, A Study on the actual Status of heat transfer oils in industries for process safety management, Journal of the Korean Institute of Gas, Vol. 18, No. 5, pp. 33-39, 2014 https://doi.org/10.7842/kigas.2014.18.5.33
  4. "Shell and Tube Heat exchanger, Southwest thermal Technology Inc" retrieved 1 May 2018 from https://www.southwestthermal.com/
  5. Incropera F.P., Fundamentals of Heat and mass transfer, 6th ed., John Wiley & Sons Inc., New York, N.Y., U.S.A., Ch. 8, 2007.
  6. "Technical data, Jarytherm DBT, Jarytherm BT06", retrieved 1 May 2018 from http://www.arkema.com.
  7. "Technical data Therminol 72", retrieved 1 May 2018 from http://www.therminol.com