• Title/Summary/Keyword: Heat exchange system

Search Result 331, Processing Time 0.025 seconds

A Study to Calculate Inlet Fluid Temperature of the Borehole Heat Exchanger (BHE) using Modified TOUGHREACT (Modified TOUGHREACT를 이용한 지중 열교환기 내 순환 유체의 온도 분포 추정)

  • Kim, Seong-Kyun;Bae, Gwang-Ok;Lee, Kang-Kun;Shim, Byoung-Ohan;Song, Yoon-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.477-480
    • /
    • 2007
  • Inlet fluid temperature of the BRE in the geothermal heat pump system depends on heat exchange rate between the refrigerant of the heat pump and the leaving fluid from the BRE. Because the outlet fluid temperature of the BHE varies with time, inlet fluid temperature has to vary with time. In this study, the module to calculate inlet fluid temperature is developed, which can consider the time-varying outlet fluid temperature and the heat exchange capacity of the heat pump. It is assumed that heat loss or gain of the leaving fluid from outlet to inlet of the BHE is negligible, except when the fluid contacts with the refrigerant of the heat pump. This module is combined with TOUGHREACT, a widely accepted three-dimensional numerical simulator for heat and water flow and geochemical reactions in geothermal systems and is applied to data analyses of the thermal response test.

  • PDF

Evaluation of Structural Integrity and Heat Exchange Efficiency for Dimpled Tube Type EGR Cooler (딤플 튜브형 EGR Cooler 구조건전성 및 열효율 평가)

  • Seo, Young-Ho;Lee, Hyun-Min;Park, Jung-Won;Ku, Tae-Wan;Kim, Jeong;Kang, Beom-Soo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.554-559
    • /
    • 2008
  • Most of vehicle manufacturers have applied exhaust gas recirculation (EGR) system to the development of diesel engines in order to obtain the high thermal efficiency without $NO_X$ and Particulate Matter (PM) emitted from the engine. EGR system, which reflow a cooled exhaust gas from vehicles burning diesel as fuel to a combustion chamber of engine, has been used to solve this problem. In order to confirm the safety of the EGR system, finite element analysis was carried out. The safety of EGR system against temperature variation in the shell and tubes was evaluated through the thermal and structural analysis, and the modal analysis using ANSYS was also performed. Finally, the performance of EGR system was verified through the experiment and numerical simulation using effectiveness-NTU method. Program for the estimation of the heat exchange efficiency of the EGR system with regard to the dimpled tube shape was developed.

  • PDF

Preliminary study and development of $kW_e$-class liquid fuel based SOFC system (액상 연료 용 $kW_e$급 SOFC 시스템 사전 연구 및 개발)

  • Yoon, Sang-Ho;Kim, Sun-Young;Bae, Joong-Myeon;Baek, Seung-Whan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.21-24
    • /
    • 2008
  • We have developed a $kW_e$ class liquid fuel based solid oxide fuel cell (SOFC) system. Our final target is to develop the 1 $kW_e$ diesel based SOFC system for residential power generator(RPG). In this study, we present the conceptual design of SOFC system. System is composed of hot-box and cold-box. Planar typed SOFC stack, heat exchanger, combustor for stack tail gas, and fuel processor, such as fuel reformer and desulfurizer, are contained in the hot-box. And several balance of plants(BOP), such as fuel suppliers and controller, are contained in the cold-box. Before the SOFC system fabrication, we have already operated the selfsustaining fuel processor, and heat exchange of all heat-related components is simulated using ASPEN HYSYS, because heat maintenance and management in hot-box are important for stable operation of SOFC system. The self-sustained fuel processor was successfully operated for about 250 hours, and heat exchange is enough to operate the SOFC system.

  • PDF

The Performance Evaluation of R407C and R410B in a Residential Window Air-Conditioner

  • Kim, Man-Hoe;Shin, Jeong-Seob;Kim, Kwon-Jin
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.6
    • /
    • pp.148-157
    • /
    • 1998
  • This study presents test results of a residential window air-conditioner using R22 and two potential alternative refrigerants, R407C and R410B. A series of performance tests has been carried out for the basic and liquid-suction heat exchange cycles in a psychometric calorimeter test facility. For R407C, the same rotary compressor was used as in the R22 system. However, compressor for the R410B system was modified to provide the similar cooling capacity. The evaporator circuit was changed to get a counter-cross flow heat exchanger to take advantage of zeotropic mixture's temperature glide, and liquid-suction heat exchange cycle was also considered to improve the system performance. Test results were compared with those for the basic R22 system. The modified system with a liquid-suction heat exchanger increased cooling capacity and energy efficiency by up to 5%.

  • PDF

An experimental study on the performance of a window system air-conditioner using R407C and R410B (R407C 및 R410B 적용 창문형 에어컨의 성능에 관한 실험적 연구)

  • Kim, M.H.;Shin, J.S.;Kim, K.J.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.4
    • /
    • pp.536-544
    • /
    • 1997
  • This study presents test results of a residential window system air-conditioner using R22 and two potential alternative refrigerants, R407C and R410B. A series of performance tests was performed for the basic and liquid-suction heat exchange cycle in a psychrometric calorimeter test facility. For R407C, the same rotary compressor was used as in the R22 system. However, compressor for the R410B system was modified to provide the similar cooling capacity. The evaporator circuit was changed to get a counter-cross flow heat exchanger to take advantage of zeotropic mixture's temperature glide, and liquid-line suction-line heat exchange cycle was also considered to improve the performance of the system. Test results were compared to those for the basic R22 system.

  • PDF

Thermal load analysis of tank culture system for applying seawater source heat pump (육상 수조식 양식장의 해수 열원 히트펌프 시스템 적용을 위한 열부하 분석)

  • Min-Gi YOON;Tae-Hoon KIM;Seok-Kwon JEONG
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.59 no.2
    • /
    • pp.155-163
    • /
    • 2023
  • This study deals with the maximum thermal load analysis and optimal capacity determination method of tank culture system for applying seawater source heat pump to save energy and realize zero energy. The location of the fish farm was divided into four sea areas, and the heat load in summer and winter was analyzed, respectively. In addition, two representative methods, the flow-through aquaculture system and the recirculation aquaculture system were reviewed as water treatment methods for fish farms. In addition, the concept of the exchange rate was introduced to obtain the maximum heat load of the fish farms. Finally, power consumption for heat pumps was analyzed in the view point of sea areas, tank capacity, and exchange rate based on the calculated maximum thermal load.

Performance Analysis of a Low-Depth Unit-Type Ground Heat Exchanger using Numerical Simulation (수치해석을 통한 저심도 유닛형 지중열교환기의 성능 검토)

  • Oh, JinHwan;Seo, JangHoo;Na, Yujin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.3
    • /
    • pp.169-173
    • /
    • 2015
  • Recently, ground source heat pump (GSHP) systems have attracted much attention, according to the enhanced social demand of renewable energy. GSHP systems can achieve higher coefficient of performance than the conventional air-source heat pump systems by utilizing stable underground temperature. However, the initial cost of GSHP system is higher than that of the conventional systems, especially, in the small-size buildings. Therefore, it is necessary to develop small-size ground heat exchanger with low cost and quick installation. In this study, a unit-type ground heat exchanger was developed and heat exchange rate was calculated by the numerical simulation. As a result, 27.45 W/m of heat exchange rate was acquired in the condition of $0.5m{\times}0.2m{\times}2m$ unit.

Conceptual Design of Turbine Exhaust System for 3rd stage of Launch Vehicle (한국형발사체 3단 터빈배기부 개념설계)

  • Shin, DongSun;Kim, KyungSeok;Han, SangYeop;Bang, JeongSuk;Kim, HyenWoong;Jo, DongHyuk
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.1068-1071
    • /
    • 2017
  • The turbine exhaust system consists of a turbine flange, heat exchanger, exhaust duct and thrust nozzle. Heat exchanger is used for the launch vehicle because of the advantage of reducing the weight of the helium gas and the storage tank by using the heat exchanger pressurization method compared to the cold gas pressurizing method. Since the gas generator is combusted in fuel-rich condition, the soot is contained in the combustion gas. Hence, the heat exchanger should be designed considering the reduction of the heat exchange efficiency due to the soot effect. In addition, the uncertainty of the heat exchange calculation and the evaluation of the influence of the combustion gas soot on the heat exchange can not be completely calculated, so the design requirements must include a structure that can guarantee and control the temperature of the heat exchanger outlet. In this paper, it is described that the component allocation, the design method considering the manufacture of internal structure, the advantages of new concept of nozzle design.

  • PDF

Thermal Influential factors of Energy pile considering Ground saturation (지반 포화조건을 고려한 에너지파일의 열적거동 인자분석)

  • Song, Jin-Young;Paek, Jin-Yeol;Yun, Tae-Sup;Jeong, Sang-Seom
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09b
    • /
    • pp.104-112
    • /
    • 2010
  • The thermal influential factor of energy pile system is investigated by considering the seasonal effect, saturation of ground, and fluid velocity based on the finite volume method. Analysis includes the evaluation of thermal resistance and corresponding heat exchange rate for each case. It is shown that the efficiency of heat exchange rate is more pronounced with higher fluid velocity due to the larger number of circulation for a given period. Through the parametric studies, it is also found that the degrees of saturation a little influenced thermal effect during 8 hours of operational scenario.

  • PDF

Development of Thermal-Hydro Pipe Element for Ground Heat Exchange System (지중 열교환 시스템을 위한 열-수리 파이프 요소의 개발)

  • Shin, Ho-Sung;Lee, Seung-Rae
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.8
    • /
    • pp.65-73
    • /
    • 2013
  • Ground-coupled heat pump system has attracted attention as a promising renewable energy technology due to its improving energy efficiency and eco-friendly mechanism for space cooling and heating. Pipes buried in the ground play a role of direct thermal interaction between circulating fluid inside the pipe and surrounding soils in the geothermal exchange system. However, both complexities of turbulent flow coupling thermal-hydraulic phenomena and very long aspect ratio of the pipe make it difficult to model the heat exchange system directly. Energy balance for fluid flow inside the pipe was derived to model thermal-hydraulic phenomena, and one-dimensional pipe element was proposed through Galerkin formation and time integration of the equation. Developed element is combined to pre-developed FEM code for THM phenomena in porous media. Numerical results of Thermal Response Test showed that line-source model overestimates equivalent thermal conductivity of surrounding soils due to thermal interaction between adjacent pipes and finite length of the pipe. Thus, inverse analysis for the TRT simulation was conducted to present optimal transformation matrix with utmost convergence.